Graphical Interpretation Questions

1. Calculate the rate of increase of power output at 10 minutes.
\qquad
\qquad
\qquad
\qquad
2. Calculate the average rate of temperature decrease of liquid \mathbf{C} between 0 and 100 seconds.
\qquad
\qquad
\qquad
\qquad
3. The graph shows how the extension of a single spring from the chest expander depends on the force acting on the spring. Use data from the graph to calculate the spring constant of the spring. Give the unit.
4. The graph shows the distance-time graph for a car. Use the graph to calculate the maximum speed the car was travelling at.
\qquad Distance

5. A 12 V filament bulb is connected to a 12 V power supply. The graph shows how the current changes after the bulb is switched on.
a) Calculate the rate at which the current increases in the first 0.02 s
b) Calculate the maximum power of the bulb.
c) Calculate the resistance of the bulb after 0.1 s
6. A bus is taking some children to school. The bus has to stop a few times. The distance-time graph for part of the journey is shown to the right.

How far has the bus travelled in the first 20 seconds?

Describe the motion of the bus between 20 seconds and 30 seconds.

Describe the motion of the bus between 30 seconds and 60 seconds.
7. The graph shows a 2.0 kg copper block being heated. Use the data in the graph to calculate the specific heat capacity of copper.
\qquad
\qquad Temperature increase in ${ }^{\circ} \mathrm{C}$

Use the graphs to calculate how much further car B travels before stopping compared to car A.
11. The graph shows how wind speed affects the power output from a wind turbine. In one 4-hour period, the wind turbine transfers 5600 kilowatt-hours of electrical energy. Use the data in the graph to calculate the average wind speed during this 4-hour period.
8. The figure below shows how the number of nuclei in a sample of molybdenum-99 changes with time as the nuclei decay.

Calculate the time for 80% of the Mo-99 nuclei in a sample to decay.
9. The graph shows how the velocity of a go-kart changes during the first 40 seconds of a race. Use the graph to calculate the acceleration of the go-kart between points J and K.
\qquad
\qquad

Use the graph to calculate the distance the go-kart travels between points J and K.
10. The graphs show how the velocity of two cars, A and B, change from the moment the car drivers see an obstacle blocking the road. One of the car drivers has been drinking alcohol. The other driver is wide awake and alert.

Calculate the acceleration during breaking.

Time in seconds

12. The graph shows how the severity of an electric shock depends on the size of the current and the time that the current flows through the body. Describe the data shown in the graph. Use the relationship Q = It

13. A driver is driving along a road at $30 \mathrm{~m} / \mathrm{s}$. The driver suddenly sees a large truck parked across the road and reacts to the situation by applying the brakes so that a constant braking force stops the car. The reaction time of the driver is 0.67 seconds, it then takes another 5 seconds for the brakes to bring the car to rest.

Using the data above, draw a speed-time graph to show the speed of the car from the instant the truck was seen by the driver until the car stopped.

Calculate the acceleration of the car whilst the brakes are applied.

Calculate the stopping distance.

