GCSE AQA Physics Calculation Practice Paper 2

For every question: write out (rearranged) equation \rightarrow substitute in values \rightarrow calculate answer

Section A - Recall Equations

Q1 a) Write down the equation that links the moment of a force, force and the distance (normal to the direction of the force)
b) A force of 30 N is applied to a spanner of length 0.25 m . Calculate the moment of the force.
c) A nut on a car wheel requires a moment of 120 Nm loosen it.

Calculate the force that will need to be applied to a spanner of length 0.3 m to loosen the nut.
d) If the maximum force that can be applied to loosen the same nut is 240 N how long must the spanner be in order to loosen it?

Q2 a) Write down the equation that links speed, time and distance travelled.
b) A cat runs after a ball. It travels a distance of 4.0 m in a time of 2.5 s .

Calculate the speed of the cat.
c) Calculate how long would it take the cat to cover a distance of 91 m at a speed of $7 \mathrm{~m} / \mathrm{s}$.
d) The cat walks at $0.9 \mathrm{~m} / \mathrm{s}$. Calculate how far can it walk in 5 min .

Q3 a) Write down the equation that links acceleration, change in velocity and time taken.
b) During an overtaking manoeuvre a car accelerates from $12 \mathrm{~m} / \mathrm{s}$ to $18 \mathrm{~m} / \mathrm{s}$ over a time of 1.2 s . Calculate the acceleration of the car during the manoeuvre.
c) When breaking the car can accelerate at $-20 \mathrm{~m} / \mathrm{s}^{2}$.

Calculate the time it would take the car to come to a stop from a speed of $45 \mathrm{~m} / \mathrm{s}$.
d) Calculate the final speed of a car that is initially travelling at $16 \mathrm{~m} / \mathrm{s}$ and then accelerates at $6 \mathrm{~m} / \mathrm{s}^{2}$ for 3.4 s

Q4 a) Write down the equation that links mass, weight and gravitational field strength.
b) Calculate the weight of a rock with mass of 5 kg on the surface of Mars.

The gravitational field strength on Mars is $3.8 \mathrm{~N} / \mathrm{kg}$.
c) A rover has a weight of 5500 N on Mars. Calculate the mass of the rover.
d) A boulder on the surface of Mars's moon Phobos has a mass of 2300 kg and a weight of 13.8 N . Calculate the gravitational field strength on the surface of Phobos.

Q5 a) Write down the equation that links the force applied to a spring, its spring constant and extension.
b) A spring with a spring constant of $20 \mathrm{~N} / \mathrm{cm}$ is stretched from a length of 25 cm to a length of 40 cm . Calculate the force applied to the spring.
c) Calculate the extension of spring with spring constant $20 \mathrm{~N} / \mathrm{m}$ when a force of 12 N is applied.
d) A different spring required a force of 30 N to compress it by 4 cm . Calculate its spring constant.

Q6 a) Write down the equation that links mass, resultant force and acceleration.
b) A car of mass 800 kg accelerates at $3 \mathrm{~m} / \mathrm{s}$.

Calculate the resultant force acting on the car.
c) Calculate the acceleration of the 800 kg car when a resultant force of 2.4 kN is applied to it.
d) A second car accelerates at $2.4 \mathrm{~m} / \mathrm{s}^{2}$ when the resultant force acting on it is 1560 N .

Calculate the mass of the car.

Q7 a) Write down the equation that links mass, momentum and velocity.
b) Calculate the momentum of a 800 kg car travelling at $4.5 \mathrm{~m} / \mathrm{s}$.
c) A car with momentum of $2500 \mathrm{kgm} / \mathrm{s}$ has a velocity of $4 \mathrm{~m} / \mathrm{s}$

Calculate the mass of the car.
d) A second car also has a momentum of $2500 \mathrm{kgm} / \mathrm{s}$ but a mass of 650 kg .

Calculate the velocity of the car.
e) A car of mass 450 kg and velocity $4.2 \mathrm{~m} / \mathrm{s}$ runs into the back of a stationary car of mass 350 kg . Calculate the velocity of the two cars as they move together after the collision.

Q8 a) Write down the equation that links pressure, force and area.

A cube shaped box of weight 300 N and sides of length 0.2 m rests on the floor.
b) Calculate the area of each face of the box.
c) Calculate the pressure the box exerts on the floor in $\mathrm{N} / \mathrm{m}^{2}$
d) The box can withstand a pressure of $12000 \mathrm{~N} / \mathrm{m}^{2}$ on its top surface. Calculate the weight the box can support.
e) A second box has a weight of 80 N and exerts a pressure of $320 \mathrm{~N} / \mathrm{m}^{2}$ on the floor. Calculate the area of contact the box makes with the floor.

Q9 a) Write down the equation that links wave speed, frequency and wavelength.
b) A loudspeaker produces sound waves with a frequency of 2000 Hz and a wavelength of 0.15 m . Calculate the speed of the sound waves.
c) Ultrasound travels through body tissue at $1200 \mathrm{~m} / \mathrm{s}$.

An ultrasound scanner produces sound waves with a frequency of 200 kHz .
Calculate the wavelength of the ultrasound waves.
d) The speed of electromagnetic waves through air is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$

A radio transmitter transmits at 102.3 MHz . Calculate the wavelength of the radio waves.

Section B - Equations Provided

Q10 (final velocity) ${ }^{2}-$ (initial velocity $^{\mathbf{2}} \mathbf{=} \mathbf{2} \mathbf{x}$ acceleration \times distance
a) A hammer was dropped on the Moon from a height of 1.4 m above the surface.

The acceleration due to gravity on the Moon is $1.6 \mathrm{~m} / \mathrm{s}^{2}$
Calculate the velocity of the hammer as it hits the surface.
b) A car accelerates at $2.5 \mathrm{~m} / \mathrm{s}^{2}$ from an initial velocity of $4 \mathrm{~m} / \mathrm{s}$ to a final velocity of $22 \mathrm{~m} / \mathrm{s}$. Calculate the distance travelled during this acceleration.
c) A van accelerates from a standing start at a rate of $1.2 \mathrm{~m} / \mathrm{s}^{2}$ over a distance of 250 m .

Calculate the final velocity of the van.

Q11 force $=$ change in momentum / time taken
a) A toy car of mass 0.25 kg accelerates from a standing start to $3 \mathrm{~m} / \mathrm{s}$ in a time of 0.45 s .
i) Calculate the change on momentum of the toy car. \qquad
ii) Calculate the resultant force acting on the toy car.
b) A rabbit of mass 0.65 kg jumps, from a standing start, with a force of 45 N that lasts for 0.12 s .
i) Calculate the change in momentum of the rabbit. \qquad
ii) Calculate the resulting velocity of the rabbit.

Q12 pressure due to a column of liquid = height \mathbf{x} density of liquid \mathbf{x} gravitational field strength
a) Calculate the pressure at the bottom of a water tank containing 2.4 m depth of water.

Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3} \quad$ Gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
b) A mercury barometer contains a column of mercury 760 mm high supported by an atmospheric pressure of 101 kPa . Gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$ Calculate the density of mercury.
c) Calculate the height of the mercury column in the barometer if the pressure drops to 97 kPa .

Q13 period=1/frequency
a) Calculate the period of waves with the following frequencies.
i) 500 Hz \qquad
ii) 340 kHz \qquad
b) Calculate the frequency of waves with the following periods.
i) 0.0025 s \qquad
ii) $200 \mu \mathrm{~s}$ \qquad
a) A telescope is used to observe a bird of height 22 cm .

The image of the bird it produces appears to be 5.5 m high.
Calculate the magnification.
b) A camera lens forms an image of a 1.8 m tall person on its sensor that is 9 mm tall. Calculate the magnification.

Q15 force on a conductor carrying a current = magnetic flux density \mathbf{x} current \mathbf{x} length
a) A wire of length 0.25 m is carrying a current of 250 mA in a magnetic field of 2.4 T . Calculate the force on the wire.
b) A wire of length 2 m experiences a force of 0.012 N when it carries a current of 2.5 A . Calculate the strength of the magnetic field the wire is passing through.
c) A wire with a current of 0.2 A feels a force of 0.55 N in a magnetic field on 200 mT . Calculate the length of the wire.

Q16 potential difference across primary coil / potential difference across secondary coil = number of turns in primary coil / number of turns in secondary coil
a) A transformer with a primary coil of 240 turns and a secondary coil od 360 turns is connected to a supply with a potential difference of 230 V . Calculate the potential difference across the secondary coil.
b) a) A transformer with a primary coil of 340 turns is required to step up the mains potential difference of 230 V up to 2500 V . Calculate the number of turns on the secondary coil required.
potential difference across primary coil x current in primary coil = potential difference across secondary coil x current in secondary coil
a) A 230 V mains transformer provides an output from the secondary coil that has a potential difference of 12 V and a current of 3.5 A . Calculate the current drawn by the primary coil.
b) A transformer with a potential difference of 230 V across the primary coil and a current of 2.2 A in the primary coil generates a potential difference of 4 V in the secondary coil. Calculate the current in the secondary coil.

