AQA GCSE Physics 9-1 Equation Cards

weight $=$ mass x gravitational field strength $\mathrm{W}=\mathrm{mg}$	work done = force x distance $\mathrm{W}=\mathrm{F} \mathrm{~s}$ P1 Learn for Paper One	force applied to a spring = spring constant x extension $\mathrm{F}=\mathrm{ke}$ P10 Learn for Paper Two
moment of a force $=$ force x distance $\mathrm{M}=\mathrm{Fd}$ P8 Learn for Paper Two	pressure = force $/$ area $\mathrm{p}=\mathrm{F} / \mathrm{A}$ P11 Learn for Paper Two	distance travelled $=$ speed x time $\mathrm{s}=\mathrm{vt}$
acceleration = change in velocity / time taken $\mathrm{a}=\Delta \mathrm{v} / \mathrm{t}$ P9 Learn for Paper Two	resultant force = mass x acceleration $\mathrm{F}=\mathrm{ma}$ P10 Learn for Paper Two	momentum = mass x velocity $\mathrm{p}=\mathrm{mv}$

kinetic energy $=$ $0.5 \times \text { mass } \times(\text { speed })^{2}$ $\mathrm{E}_{\mathrm{k}}=1 / 2 \mathrm{~m} \mathrm{v}^{2}$ P1 Learn for Paper One	gravitational potential energy $=$ mass \times gravitational field strength x height $\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}$ P1 Learn for Paper One	power = energy transferred / time $\mathrm{P}=\mathrm{E} / \mathrm{t}$
power $=$ work done $/$ time $\mathrm{P}=\mathrm{W} / \mathrm{t}$ P1 Learn for Paper One	efficiency = useful output energy transfer / total input energy transfer $\mathrm{Eff}=\mathrm{E}_{\text {out }} / \mathrm{E}_{\mathrm{in}}$ P1 Learn for Paper One	efficiency = useful power output / total power output $\mathrm{Eff}=\mathrm{P}_{\mathrm{out}} / \mathrm{P}_{\mathrm{in}}$
wave speed = frequency x wavelength $\mathrm{v}=\mathrm{f} \lambda$ P13 Learn for Paper Two	charge flow = current x time $\mathrm{Q}=\mathrm{I} \text { t }$ P4 Learn for Paper One	potential difference $=$ current x resistance

power $=$ potential difference x current $\mathrm{P}=\mathrm{V} \text { I }$ P5 Learn for Paper One	power $=(\text { current })^{2} x$ resistance $\mathrm{P}=\mathrm{I}^{2} \mathrm{R}$ P5 Learn for Paper One	energy transferred $=$ power x time $\mathrm{E}=\mathrm{Pt}$ P5 Learn for Paper One
energy transferred = charge flow x potential difference $\mathrm{E}=\mathrm{Q} \mathrm{~V}$	density $=$ mass $/$ volume $\rho=\mathrm{m} / \mathrm{V}$	pressure $=$ height x density x gravitational field strength $\mathrm{p}=\mathrm{h} \rho \mathrm{~g}$ P11 Paper Two - On Equation Sheet
(final velocity) ${ }^{2}$ - (initial velocity) ${ }^{2}$ $=2 \times$ acceleration \times distance $v^{2}-u^{2}=2 \text { as }$ P9 Paper Two - On Equation Sheet	force $=$ change in momentum / time taken $\mathrm{F}=\mathrm{m} \Delta \mathrm{v} / \Delta \mathrm{t}$	elastic potential energy $=$ 0.5 x spring constant x (extension) ${ }^{2}$ $\mathrm{E}_{\mathrm{e}}=1 / 2 \mathrm{k} \mathrm{e}^{2}$ P1 Paper One - On Equation Sheet

change in thermal energy $=$ mass x specific heat capacity x temperature change $\Delta \mathrm{E}=\mathrm{mc} \Delta \theta$ P1 P6 Paper One - On Equation Sheet	period = 1 / frequency $\mathrm{T}=1 / \mathrm{f}$	magnification $=$ image height / object height $\mathrm{m}=\mathrm{h}_{\mathrm{i}} / \mathrm{h}_{\mathrm{o}}$ P14 Paper Two - On Equation Sheet
force $=$ magnetic flux density x current x length $\mathrm{F}=\mathrm{B} \text { I } 1$ P15 Paper Two - On Equation Sheet	energy for hange of state $=$ mass x specific latent heat $\mathrm{E}=\mathrm{m} \mathrm{~L}$ P6 Paper One - On Equation Sheet	p.d. across primary / p.d. across secondary = turns in primary / turns in secondary $\mathrm{V}_{\mathrm{p}} / \mathrm{V}_{\mathrm{s}}=\mathrm{n}_{\mathrm{p}} / \mathrm{n}_{\mathrm{s}}$ this is the same as $\mathrm{V}_{\mathrm{p}} \mathrm{n}_{\mathrm{s}}=\mathrm{V}_{\mathrm{s}} \mathrm{n}_{\mathrm{p}}$ divide through to leave the missing value the subject P15 Paper Two - On Equation Sheet
primary p.d. x primary current $=$ secondary p.d. x secondary current $\mathrm{V}_{\mathrm{s}} \mathrm{I}_{\mathrm{s}}=\mathrm{V}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}$ divide through to leave the missing value as the subject e.g dividing by V_{s} leaves $I_{s}=V_{p} I_{p} / V_{s}$ P15 Paper Two - On Equation Sheet	pressure \times volume $=$ constant $\mathrm{pV}=\mathrm{constant}$	To use these cards print them out and carefully cut out the cards. On the reverse of each card write the quantities involved in the relationship. You could also include the units. e.g. for the first card you would write: weight in N mass in kg gravity in N / kg Then repeatedly test your ability to recall the equations when you look at the quantities on the reverse. Practice rearranging the relationships or learn the triangle if you prefer.

