AQA GCSE Physics Paper 1 (P1 to P7) Equations

Recall may be required

1	Ρ1	work done = force x distance (along the line of action of the force)	W = F s
2	Ρ1	kinetic energy = 0.5 x mass x (speed) ²	$E_k = \frac{1}{2} m v^2$
3	Ρ1	gravitational potential energy = mass x gravitational field strength (g) x height	$E_p = m g h$
4	Ρ1	power = energy transferred / time	$\mathbf{P} = \mathbf{E} / \mathbf{t}$
5	Ρ1	power = work done / time	$\mathbf{P} = \mathbf{W} / \mathbf{t}$
6	Ρ1	efficiency = useful output energy transfer / total input energy transfer	$Eff = E_{out} / E_{in}$
7	Ρ1	efficiency = useful power output / total power input	$Eff = P_{out}/P_{in}$
8	Ρ4	charge flow = current x time	Q = I t
9	Ρ4	potential difference = current x resistance	V = I R
10	Ρ5	power = potential difference x current	$\mathbf{P} = \mathbf{V} \mathbf{I}$
11	Ρ5	power = (current) ² x resistance	$\mathbf{P} = \mathbf{I}^2 \mathbf{R}$
12	Ρ5	energy transferred = power x time (Same as equation 4)	$\mathbf{E} = \mathbf{P} \mathbf{t}$
13	Ρ5	energy transferred = charge flow x potential difference	$\mathbf{E} = \mathbf{Q} \mathbf{V}$
14	P6	density = mass / volume	$\rho = m / V$

Given on equation sheet

15	P1	elastic potential energy = 0.5 x spring constant x (extension) ²	$E_e = \frac{1}{2} k e^2$
16	P2 P6	change in thermal energy = mass x specific heat capacity x temperature change	$\Delta E = m c \Delta \theta$
17	P6	thermal energy for a change of state = mass x specific latent heat	$\mathbf{E} = \mathbf{m} \mathbf{L}$
18	P6	For gases: pressure x volume = constant	pV = constant

Standard Symbols and Units

1	time, t	second, s		
2	distance, s height, h extension, e	metre, m		
3	mass, m	kilogram, kg		
4	volume, V	metre cubed, m ³		
5	speed, v	meter per second, m/s		
6	work, W energy, E	joule, J (or kilowatt hour, kWh)		
7	power, P	watts, W		
8	force, F	newton, N		
9	density, ρ	kilogram per metre cubed, kg/m ³		
10	pressure, p	pascal, Pa (N/m²)		
11	gravitational field strength, g	newton per kilogram, N/kg		
12	charge, Q	coulomb, C		
13	current, I	ampere or amp, A		
14	potential difference, V	volt, V		
15	resistance, R	ohm, Ω		
16	temperature, θ	degree Celsius, °C		
17	specific latent heat, L	joule per kilogram, J/kg		
18	specific heat capacity, c	joule per kilogram per degree Celsius, J/(kg°C)		
19	spring constant, k	newton per metre, N/m		

nano, n	micro, μ	milli <i>,</i> m	centi, c	kilo, k	mega, M	giga, G
10 ⁻⁹	10 ⁻⁶	10 ⁻³	10 ⁻²	10 ³	10 ⁶	10 ⁹