AQA GCSE Physics Equations Recall Quiz

Paper 1 Topics 1 to 7 **Equation Sheet Equations** energy = $\frac{1}{2}$ x spring constant x extension² energy = mass x SHC x temp. change energy = mass x latent heat pressure x volume = constant

Write down the equation that links.....

distance force work done

kinetic energy mass speed

2

3 gravitational field strength gravitational potential energy height mass

⁴ energy transferred power time

power time workdone

5

efficiency total input useful output

6

charge flow current time

current potential difference resistance

current potential difference

power

current power resistance

11 charge flow energy transferred potential difference

density mass volume

Paper 1 Answers

distance force work done work done = force x distance W F S

kinetic energy mass speed kinetic energy = $\frac{1}{2}$ x mass x speed²

3 gravitational field strength gravitational potential energy height

GPE = gravity x mass x height

⁴ energy transferred power time

power = energy transferred / time

power time work done power = work done / time

efficiency total input useful output

efficiency = useful output / total input

charge flow current time charge flow = current x time

current potential difference resistance

potential difference = current x resistance

R

Ι

current potential difference power

power = potential difference x current

current power resistance power = current² x resistance P **T**2 R

11 charge flow energy transferred potential difference energy transferred = charge x p.d. E

Paper 2 Topics 8 to 16

 $v^2 - u^2 = 2 a s$

$$\mathbf{F} = \mathbf{m} \, \Delta \mathbf{v} \, / \, \Delta \mathbf{t}$$

$$p = h \rho g$$

$$T = 1 / f$$

$$m = i / o$$

$$F = B I I$$

$$V_p / V_s = n_p / n_s$$

$$\mathbf{V}_{s} \mathbf{I}_{s} = \mathbf{V}_{p} \mathbf{I}_{p}$$

Write down the equation that links.....

distance force moment

distance speed time

acceleration change in velocity time

4 gravitational field strength

mass

weight

5 extension (or compression) force spring constant

acceleration force

6

mass

mass momentum velocity

area force pressure

frequency wavelength wave speed

Paper 2 Answers

distance force moment moment = force x distance Μ

F

distance speed time

distance = speed x time

acceleration change in velocity time

acceleration = change in velocity / time

4 gravitational field strength

mass

weight

weight = mass x gravity

5 extension (or compression) force spring constant

force = spring constant x extension

acceleration force

6

mass

force = mass x acceleration

mass momentum velocity momentum = mass x velocity p m \mathbf{V}

area force pressure pressure = force / area

frequency wavelength wave speed

wave speed = frequency x wavelength

tiny.cc/sapa

