AQA GCSE Physics Equations H = Higher Tier Only

Paper 1 – Equations after triple line are provided on the equation sheet.

P1	work done = force x distance (along the line of action of the force)	W = F s
P1	kinetic energy = 0.5 x mass x (speed) ²	$E_k = \frac{1}{2} m v^2$
P1	gravitational potential energy = mass x gravitational field strength (g) x height	$E_p = m g h$
P1	power = energy transferred / time (power = work done / time P= W / t)	P = E / t
P1	efficiency = useful output energy transfer / total input energy transfer	$Eff = E_{out} / E_{in}$
P1	efficiency = useful power output / total power input	$Eff = P_{out} / P_{in}$
P4	charge flow = current x time	Q = I t
P4	potential difference = current x resistance	V = I R
P5	power = potential difference x current	P = V I
P5	power = (current) ² x resistance	$\mathbf{P} = \mathbf{I}^2 \mathbf{R}$
P5	energy transferred = charge flow x potential difference	E = Q V
P6	density = mass / volume	$\rho = m / V$
P1	elastic potential energy = 0.5 x spring constant x (extension) ²	$E_e = \frac{1}{2} k e^2$
P2 P6	change in thermal energy = mass x specific heat capacity x temperature change	$\Delta E = m c \Delta \theta$
P6	thermal energy for a change of state = mass x specific latent heat	E = m L
P6	For gases: pressure x volume = constant	pV = constant

Paper 2 – Equations after the triple line are provided on the equation sheet.

P8	moment of a force = force x distance (normal to the direction of the force)	M = F d
P9	distance travelled = speed x time	s = v t
P9	acceleration = change in velocity / time taken	$a = \Delta v / t$
P10	weight = mass x gravitational field strength	W = m g
P10	force applied to a spring = spring constant x extension	F = k e
P10	resultant force = mass x acceleration	$\mathbf{F} = \mathbf{m} \mathbf{a}$
Р10 н	momentum = mass x velocity	p = m v
P11	pressure = force normal to the surface / area of that surface	p = F/A
P13	wave speed = frequency x wavelength	$v=f\;\lambda$
Р9	$(final velocity)^2 - (initial velocity)^2 = 2 x acceleration x distance$	$v^2 - u^2 = 2 a s$
Р10 н	force = change in momentum / time taken	$F = m \Delta v / \Delta t$
Р11 н	pressure due to a column of liquid = height of column x density of liquid x gravitational field strength (g)	$p = h \rho g$
P12	period = 1 / frequency	T = 1 / f
P14	magnification = image height / object height	m = i / o
Р15 н	force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density x current x length	F = B I I
Р15 н	potential difference across primary coil / potential difference across secondary coil = number of turns in primary coil / number of turns in secondary coil	$V_p / V_s = n_p / n_s$
Р15 н	potential difference across primary coil x current in primary coil = potential difference across secondary coil x current in secondary coil	$\mathbf{V}_{s} \mathbf{I}_{s} = \mathbf{V}_{p} \mathbf{I}_{p}$