AQA GCSE 9-1 Physics Y10 Exam
 Name
 Practice Calculation Questions

Relationships to learn

P1	kinetic energy $=0.5 \times$ mass $\times(\text { speed })^{2}$	$\mathrm{E}_{\mathrm{k}}=1 / 2 \mathrm{mv}^{2}$
P1	gravitational potential energy $=$ mass \times gravitational field strength (g) x height	$\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}$
P1	efficiency = useful output energy transfer / useful input energy transfer	
P1	\% efficiency $=100 \mathrm{x}$ useful output energy transfer / useful input energy transfer	
P1	power = energy transferred / time	$\mathrm{P}=\mathrm{E} / \mathrm{t}$
P1	power = work done / time	$\mathrm{P}=\mathrm{W} / \mathrm{t}$
P4	potential difference $=$ current \times resistance	$\mathrm{V}=\mathrm{I} \mathrm{R}$
P5	power $=$ potential difference \times current	$\mathrm{P}=\mathrm{V} \mathrm{I}$
P5	power $=(\text { current })^{2} \times$ resistance	$\mathrm{P}=\mathrm{I}^{2} \mathrm{R}$
P6	density = mass / volume	$\rho=\mathrm{m} / \mathrm{V}$

Relationships provided in exam

P1	elastic potential energy $=0.5 \times$ spring constant $x(\text { extension })^{2}$	$\mathrm{E}_{\mathrm{e}}=1 / 2 \mathrm{ke}^{2}$
P2 P6	change in thermal energy $=$ mass \times specific heat capacity \times temperature change	$\Delta \mathrm{E}=\mathrm{mc} \Delta \theta$
P6	For gases: pressure x volume $=$ constant	$\mathrm{pV}=$ constant

The Earth's gravitational field strength is $9.8 \mathrm{~N} / \mathrm{kg}$

1 A 1.2 kg ball is kicked at a speed of $4 \mathrm{~m} / \mathrm{s}$. Calculate its kinetic energy.
\qquad J
$2 \quad$ The 1.2 kg ball falls down a 3 m deep well.
Calculate how much gravitational potential energy is loses as it falls.
\qquad J
3a Calculate the efficiency of a kettle that transfers 22 kJ of energy to the water in it for every 40 kJ of electrical energy supplied.

Calculate the energy transferred by a 24 W lamp in 45 s.
\qquad
$5 \quad$ Calculate the power of a motor that can do 3000 J of work in 12 s
\qquad W

6 A lamp of resistance 25 ohms has a current of 3.2 A flowing through it.
Calculate the potential difference across the lamp.
\qquad
V

7 A loudspeaker has a current of 1.2 A flowing through it and a potential difference of 18 V . Calculate the power of the speaker.
\qquad
W

8 A lamp of resistance 12 ohms has a current of 2 A flowing through it. Calculate the power of the lamp.
\qquad W
$9 \quad$ Calculate the density of a block of metal of mass 25 kg and volume $0.02 \mathrm{~m}^{3}$.
\qquad
$\mathrm{kg} / \mathrm{m}^{3}$

10 A spring of spring constant $25 \mathrm{~N} / \mathrm{m}$ is extended by 0.2 m Calculate the energy it stores.

11 Water has a specific heat capacity of $4.2 \mathrm{~J} /\left({ }^{\circ} \mathrm{Cg}\right)$
Calculate the energy needed to heat up a 250 g of water by $35^{\circ} \mathrm{C}$

12 Calculate the pV gas constant for a sample of gas of pressure 2500 Pa and volume $15 \mathrm{~m}^{3}$

Section B Questions may require converting units and/or rearranging an equation.
13 A ball travelling at a velocity of $8 \mathrm{~m} / \mathrm{s}$ has 250 J of kinetic energy.
Calculate the mass of the ball.
\qquad
kg
14 A lamp has a current of 1.25 A when the potential difference across it is 6 V
Calculate the resistance of the lamp.
\qquad
Ω

16 Calculate the energy stored in a spring of spring constant $120 \mathrm{~N} / \mathrm{m}$ that has been compressed by 5 cm .
\qquad
17 A motor has an efficiency of 40%. How much electrical energy needs to be supplied for the motor to do 240 J of work.
\qquad
Calculate the volume of 2 kg of a liquid of density $2.2 \mathrm{~kg} / \mathrm{m}^{3}$
\qquad m^{3}

19 How much must a spring of spring constant $30 \mathrm{~N} / \mathrm{m}$ be compresses to store 0.0375 J of energy.
\qquad
m
Calculate the velocity of a 1.2 kg ball with a kinetic energy of 200 J .

Section C Questions may involve more than one step, converting units and/or rearranging an equation.
21 A spring is stretches 20 cm when a force of 2.5 N is applied.
Calculate the energy the spring will store when extended by 15 cm .
\qquad
22 A weather balloon is filled with $120 \mathrm{~m}^{3}$ of hydrogen at 100 kPa .
Calculate the volume of the balloon at an altitude of 40 km where the pressure is 0.90 kPa
\qquad m^{3}

23 A 2500 W kettle is filled with 1250 g of $20^{\circ} \mathrm{C}$ water of specific heat capacity $4.2 \mathrm{~J} /\left({ }^{\circ} \mathrm{C}\right.$ g) Calculate how long it will take to boil assuming it is 80% efficient.
\qquad s
24 Calculate the speed that a $2000 \mathrm{~W}, 60 \%$ efficient motor, can lift a mass of 8.5 kg
\qquad m / s

25 Calculate how long it would take a 120 kJ battery to be charged by a current of 1.2 A at a potential difference of 6.2 V
\qquad

