P1 Energy conservation and dissipation revision questions **ANSWERS**

1	What kind of energy store does a moving object have?	Kinetic
2	What kind of energy store does a battery have?	Chemical
3	Give 3 ways in which energy can be transferred	Mechanic work (when a force is moved) , electric current, heating
4	State the law of energy conservation	Energy cannot be created nor destroyed (only transferred)
5	What is the unit of work?	Joule (work is a transfer of energy)
6	When work is done against friction in where does the energy transfer to ?	Thermal store of the two objects experiencing friction
7a	A motor lifts a 2 kg mass through a height of 10m.Calculate the work done by	Force = mg = 2 x 10 = 20 OR Work done = gain in gpe
	the motor	W =Fd = 20 x 10 = 200 J gpe = mgh = 2 x10x10 = 200J
7b	In the same time the motor has 250J of electrical energy input to it. Calculate the efficiency of the motor	Efficiency = Useful / input = 200/250 = 0.8 (x100 = 80%)
7c	What measurement would be needed to calculate the output power of the motor?	Time (Power = Energy / time) or Watts are Joules per second
8	Give 3 ways you could improve the efficiency of an electric motor?	Lubricate, streamline, reduce resistance of wires, lubricate
9	Calculate the energy used by a 12W bulb in 2 minutes	E = pt = 12 x 2 x 60 = 1440 J
10	Calculate the kinetic energy of a 100g ball thrown at 3 m/s	$KE = 0.5 \text{ m } v^2 = 0.5 \text{ x } 0.1 \text{ x } 3^2 = 0.45 \text{ J}$
11	What would happen to the kinetic energy if the speed were doubled?	$(double)^2$ or 4x bigger = 0.45x4 = 1.8J
12	Describe the energy transfers which occur when an object falls from	$GPE \rightarrow KE + Heat (+sound)$
	a height (include air resistance)	Or energy arrow
13	Ignoring air resistance – what can we say about the kinetic energy gained by a falling object?	KE gained = GPE lost
14	Mark on the energy types on the picture Sketch a graph of Energy against time, showing 2 different types.	15 Ignoring air resistance – calculate the speed of the 3kg pendulum bob at the bottom of it's swing if it released from its high point which is 0.25m above the bottom of the swing. KE gained = GPE lost KE = 0.5 m v ² = mgh (m cancels) so 0.5 v ² = gh = 0.5 x 3 x v ² = 3 x 10 x0.25 v ² = 7.5/1.5 = 5 v = $\sqrt{5}$ = 2.24 m/s