P1 Energy conservation and dissipation revision questions ANSWERS

1	What kind of energy store does a moving object have?	Kinetic
2	What kind of energy store does a battery have?	Chemical
3	Give 3 ways in which energy can be transferred	Mechanic work (when a force is moved), electric current, heating
4	State the law of energy conservation	Energy cannot be created nor destroyed (only transferred)
5	What is the unit of work?	Joule (work is a transfer of energy)
6	When work is done against friction in where does the energy transfer to ?	Thermal store of the two objects experiencing friction
7a	A motor lifts a 2 kg mass through a height of 10 m . Calculate the work done by the motor	$\begin{array}{lc} \hline \text { Force }=m g=2 \times 10=20 & \text { OR } \\ \mathrm{W}=\mathrm{Fd}=20 \times 10=200 \mathrm{~J} & \text { Work done }=\text { gain in gpe } \\ \text { gpe }=m g h=2 \times 10 \times 10=200 \mathrm{~J} \\ \hline \end{array}$
7b	In the same time the motor has 250J of electrical energy input to it. Calculate the efficiency of the motor	Efficiency $=$ Useful / input $=200 / 250=0.8 \quad(\times 100=80 \%)$
7c	What measurement would be needed to calculate the output power of the motor?	Time (Power = Energy / time) or Watts are Joules per second
8	Give 3 ways you could improve the efficiency of an electric motor?	Lubricate, streamline, reduce resistance of wires, lubricate
9	Calculate the energy used by a 12 W bulb in 2 minutes	$\mathrm{E}=\mathrm{pt}=12 \times 2 \times 60=1440 \mathrm{~J}$
10	Calculate the kinetic energy of a 100 g ball thrown at $3 \mathrm{~m} / \mathrm{s}$	$\mathrm{KE}=0.5 \mathrm{~m} \mathrm{v}^{2}=0.5 \times 0.1 \times 3^{2}=0.45 \mathrm{~J}$
11	What would happen to the kinetic energy if the speed were doubled?	(double) ${ }^{2}$ or $4 \times$ bigger $=0.45 \times 4=1.8 \mathrm{~J}$
12	Describe the energy transfers which occur when an object falls from a height (include air resistance)	GPE \rightarrow KE + Heat (+sound) Or energy arrow
13	Ignoring air resistance - what can we say about the kinetic energy gained by a falling object?	KE gained = GPE lost
14	Mark on the energy types on the picture Sketch a graph of Energy against time, showing 2 different types.	15 Ignoring air resistance - calculate the speed of the 3 kg pendulum bob at the bottom of it's swing if it released from its high point which is 0.25 m above the bottom of the swing. KE gained $=$ GPE lost $\begin{aligned} \mathrm{KE}= & 0.5 \mathrm{~m} \mathrm{v}^{2}=\mathrm{mgh}(\mathrm{~m} \text { cancels }) \text { so } 0.5 \mathrm{v}^{2}=\mathrm{gh} \\ = & 0.5 \times 3 \times \mathrm{v}^{2}=3 \times 10 \times 0.25 \\ & \mathrm{v}^{2}=7.5 / 1.5=5 \\ \mathrm{v}= & \mathrm{v} 5=2.24 \mathrm{~m} / \mathrm{s} \end{aligned}$

