A student suspended a spring from a laboratory stand and then hung a weight from the spring.
Figure 1 shows the spring before and after the weight is added.
Figure 1

(a) Which distance gives the extension of the spring?

Tick one box.
from \mathbf{J} to \mathbf{K}

from \mathbf{K} to \mathbf{L}

from \mathbf{J} to \mathbf{L} \square
(b) The student used the spring, a set of weights and a ruler to investigate how the extension of the spring depended on the weight hanging from the spring.

Figure 2 shows that the ruler is in a tilted position and not upright as it should be.
Figure 2

How would leaving the ruler tilted affect the weight and extension data to be recorded by the student?

Use answers from the box to complete each sentence.
Each answer may be used once, more than once or not at all.

greater than	the same as	smaller than

The weight recorded by the student would be \qquad the actual weight.

The extension recorded by the student would be \qquad the actual weight.
(c) The student moves the ruler so that it is upright and not tilted.

The student then completed the investigation and plotted the data taken in a graph.
The student's graph is shown in Figure 3.
Figure 3

Use Figure 3 to determine the additional force needed to increase the extension of the spring from 5 cm to 15 cm .

> Additional force = N
(d) What can you conclude from Figure 3 about the limit of proportionality of the spring?
(e) The student repeated the investigation with three more springs, \mathbf{K}, \mathbf{L} and \mathbf{M}.

The results for these springs are given in Figure 4.
Figure 4

All three springs show the same relationship between the weight and extension.
What is that relationship?

Tick one box.
The extension increases non-linearly with the increasing weight.

The extension is inversely proportional to the weight.

\square
The extension is directly proportional to the weight.
(f) Which statement, \mathbf{A}, \mathbf{B} or \mathbf{C}, should be used to complete the sentence?

Write the correct letter, \mathbf{A}, \mathbf{B} or \mathbf{C}, in the box below.
A a lower spring constant than
B the same spring constant as
C a greater spring constant than

From Figure 4 it can be concluded that spring \mathbf{M} has \square the other two springs.

2 The figure below shows the forces acting on a child who is balancing on a pogo stick.
The child and pogo stick are not moving.

(a) The downward force of the child on the spring is equal to the upward force of the spring on the child.

This is an example of which one of Newton's Laws of motion?

Tick one box.

First Law \square
Second Law

Third Law

(b) Complete the sentence.

Use an answer from the box.

elastic potential	gravitational potential	kinetic

The compressed spring stores .. energy.
(c) The child has a weight of 343 N .

Gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Write down the equation which links gravitational field strength, mass and weight.
\qquad
(d) Calculate the mass of the child.
\qquad
\qquad
\qquad
Mass = .. kg
(e) The weight of the child causes the spring to compress elastically from a length of 30 cm to a new length of 23 cm .

Write down the equation which links compression, force and spring constant.
\qquad
(f) Calculate the spring constant of the spring.

Give your answer in newtons per metre.
\qquad
\qquad
\qquad

3

A student suspended a spring from a laboratory stand and then hung a weight from the spring.
Figure 1 shows the spring before and after the weight is added.
Figure 1

(a) Measure the extension of the spring shown in Figure 1.
Extension = .. mm
(b) The student used the spring, a set of weights and a ruler to investigate how the extension of the spring depended on the weight hanging from the spring.

Before starting the investigation the student wrote the following prediction:

The extension of the spring will be directly proportional to the weight hanging from the spring.

Figure 2 shows how the student arranged the apparatus.
Figure 2

Before taking any measurements, the student adjusted the ruler to make it vertical.
Explain why adjusting the ruler was important.
\qquad
\qquad
\qquad
\qquad
(c) The student measured the extension of the spring using a range of weights.

The student's data is shown plotted as a graph in Figure 3.
Figure 3

What range of weight did the student use?
\qquad
(d) Why does the data plotted in Figure 3 support the student's prediction?
\qquad
\qquad
(e) Describe one technique that you could have used to improve the accuracy of the measurements taken by the student.
\qquad
\qquad
\qquad
\qquad
(f) The student continued the investigation by increasing the range of weights added to the spring.

All of the data is shown plotted as a graph in Figure 4.
Figure 4

At the end of the investigation, all of the weights were removed from the spring.
What can you conclude from Figure 4 about the deformation of the spring?
\qquad
\qquad

Give the reason for your conclusion.
\qquad
\qquad

A student investigated the behaviour of springs. She had a box of identical springs.
(a) When a force acts on a spring, the shape of the spring changes.

The student suspended a spring from a rod by one of its loops. A force was applied to the spring by suspending a mass from it.

Figure 1 shows a spring before and after a mass had been suspended from it.
Figure 1

(i) State two ways in which the shape of the spring has changed.

1 \qquad

2 \qquad
(ii) No other masses were provided.

Explain how the student could test if the spring was behaving elastically.
\qquad
\qquad
\qquad
\qquad
(b) In a second investigation, a student took a set of measurements of force and extension.

Her results are shown in Table 1.
Table 1

Force in newtons	0.0	1.0	2.0	3.0	4.0	5.0	6.0
Extension in cm	0.0	4.0		12.0	16.0	22.0	31.0

(i) Add the missing value to Table 1.

Explain why you chose this value.
\qquad
\qquad
\qquad
\qquad
(ii) During this investigation the spring exceeded its limit of proportionality.

Suggest a value of force at which this happened.
Give a reason for your answer.
Force = N

Reason \qquad
\qquad
\qquad
(c) In a third investigation the student:

- suspended a 100 g mass from a spring
- pulled the mass down as shown in Figure 2
- released the mass so that it oscillated up and down
- measured the time for 10 complete oscillations of the mass
- repeated for masses of $200 \mathrm{~g}, 300 \mathrm{~g}$ and 400 g .

Figure 2

Table 2

	Time for 10 complete oscillations in seconds			
Mass in g	Test 1	Test 2	Test 3	Mean
100	4.34	5.20	4.32	4.6
200	5.93	5.99	5.86	5.9
300	7.01	7.12	7.08	7.1
400	8.23	8.22	8.25	8.2

(i) Before the mass is released, the spring stores energy.

What type of energy does the spring store?
Tick (\checkmark) one box.

	Tick (\checkmark)
Elastic potential energy	
Gravitational potential energy	
Kinetic energy	

(ii) The value of time for the 100 g mass in Test $\mathbf{2}$ is anomalous.

Suggest two likely causes of this anomalous result.
Tick (\checkmark) two boxes.

	Tick (\checkmark)
Misread stopwatch	
Pulled the mass down too far	
Timed half oscillations, not complete oscillations	
Timed too few complete oscillations	
Timed too many complete oscillations	

(iii) Calculate the correct mean value of time for the 100 g mass in Table 2.
\qquad
\qquad
Mean value = s
(iv) Although the raw data in Table 2 is given to 3 significant figures, the mean values are correctly given to 2 significant figures.

Suggest why.
\qquad
\qquad
\qquad
\qquad
(v) The student wanted to plot her results on a graph. She thought that four sets of results were not enough.

What extra equipment would she need to get more results?
\qquad
\qquad
\qquad
\qquad

(a) (i) Complete the following sentence using letters, A, B,C or D, from the diagram. The extension of the spring is the distance between the positions labelled
\qquad
\qquad on the metre rule.
(ii) What form of energy is stored in the stretched spring?
\qquad
(b) The results from the investigation are plotted on the following graph.

(i) The graph shows that the student has made an error throughout the investigation.

What error has the student made?
\qquad
\qquad
Give the reason for your answer.
\qquad
\qquad
(ii) The student has loaded the spring beyond its limit of proportionality. Mark on the graph line the limit of proportionality of the spring. Label the point \mathbf{P}. Give the reason for choosing your point \mathbf{P}.
\qquad
\qquad
\qquad
(c) The student uses a different spring as a spring balance. When the student hangs a stone from this spring, its extension is 72 mm .

The spring does not go past the limit of proportionality.
Calculate the force exerted by the stone on the spring.

$$
\text { spring constant }=25 \mathrm{~N} / \mathrm{m}
$$

Show clearly how you work out your answer.
\qquad
\qquad
\qquad force.

Applying a force to the gauge causes it to stretch.
This makes the electrical resistance of the wire change.

(a) (i) Using the correct symbols, add to the diagram to show how a battery, an ammeter and a voltmeter can be used to find the resistance of the strain gauge drawn above.
(ii) When in use, the strain gauge is always connected to a d.c. power supply, such as a battery.

How is a d.c. (direct current) power supply different from an a.c. (alternating current) power supply?
\qquad
\qquad
\qquad
(b) Before any force is applied, the unstretched gauge, correctly connected to a 3.0 V battery, has a current of 0.040 A flowing through it.
(i) Calculate the resistance of the unstretched gauge.

Show clearly how you work out your answer.
\qquad
\qquad
Resistance =
(ii) Stretching the gauge causes the current flowing through the gauge to decrease.

What happens to the resistance of the gauge when it is stretched?
\qquad
\qquad
(iii) What form of energy is stored in the gauge when a force is applied and the gauge stretches?
\qquad
(a) The pictures show four objects. Each object has had its shape changed.

Which of the objects are storing elastic potential energy?
\qquad
Explain the reason for your choice or choices.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) A student makes a simple spring balance. To make a scale, the student uses a range of weights. Each weight is put onto the spring and the position of the pointer marked

The graph below shows how increasing the weight made the pointer move further.

(i) Which one of the following is the unit of weight?.

Draw a ring around your answer.
joule kilogram newton watt
(ii) What range of weights did the student use?
(iii) How far does the pointer move when 4 units of weight are on the spring?
\qquad
(iv) The student ties a stone to the spring. The spring stretches 10 cm .

What is the weight of the stone?
\qquad

8 (a) The diagram shows three similar toys. Each toy should be able to balance on a narrow rod. The arrows show the direction in which the weight of the toy acts.

Only one of the toys balances on the rod, the other two fall over. Which one of the toys is balanced? Explain the reason for your choice.
\qquad
\qquad
\qquad
\qquad
(b) The diagram shows a simple toy. Different animal shapes can be positioned so that the 50 cm rod balances horizontally.

(i) Calculate the moment exerted by the elephant shape of weight 2 N about the pivot \mathbf{P}. Show clearly how you work out your answer and give the unit.
\qquad
\qquad
Moment =
\qquad
(ii) Use the following relationship to calculate the weight of the monkey shape. total clockwise moment = total anticlockwise moment
\qquad
\qquad
Weight =
(c) The graph shows how the length of the spring changes as the total weight of the different animal shapes change.

Use the graph to find how much the spring extends when the elephant shape and the monkey shape are hung from the rod. Show how you get your answer.
\qquad
\qquad
\qquad cm
(a) The diagrams below show pairs of forces acting on different objects. In each case describe what happens when the forces are increased. Then describe what happens when the forces are removed.
(i)

When the forces are increased
\qquad
\qquad
When the forces are removed
\qquad
\qquad
(ii)

When the forces are increased
\qquad
\qquad
When the forces are removed
\qquad
\qquad
(iii)

\qquad
\qquad
When the forces are removed
\qquad
\qquad
(b) The graph shows the increase in length of a spring against load (force).

The length of the spring with no load was 15 cm .
Use the graph to find:
(i) The load needed to produce an increase in length of 2 cm .
\qquad
(ii) The increase in length produced by a load of 2.3 N .
(iii) The length of the spring when the load was 2.3 N .

The diagrams show pairs of forces acting on different objects. In each case describe what happens when the forces are increased. Then describe what happens when the forces are removed.
(a)

When the forces are increased \qquad
\qquad
When the forces are removed \qquad
\qquad
(b)

When the forces are increased \qquad
\qquad
When the forces are removed \qquad
\qquad

When a bungee-jump is made the jumper steps off a high platform. An elastic cord from the platform is tied to the jumper.
The diagram below shows different stages in a bungee-jump.
Forces \mathbf{A}, \mathbf{B} and \mathbf{C} are forces acting on the jumper at each stage.

(a) Name force A.
\qquad
(b) The motion of the jumper is shown in the diagrams.

By comparing forces \mathbf{A}, \mathbf{B} and \mathbf{C}, state how the motion is caused in:
(i) diagram \mathbf{X};
\qquad
(ii) diagram \mathbf{Y};
\qquad
(iii) diagram \mathbf{Z}.
\qquad
(c) The table gives results for a bungee cord when it is being stretched.

STRETCHING FORCE (N)	100	200	400	600	800
LENGTH OF CORD (m)	20	24	32	40	48

(i) Plot a graph of these results on the graph paper.

(ii) Use the graph to find the length of the cord before it was stretched.

Length m

12 A 1 N weight is tied to a 30 cm long piece of elastic. The other end is fixed to the edge of a laboratory bench. The weight is pushed off the bench and bounces up and down on the elastic.

The graph shows the height of the weight above the floor plotted against time, as it bounces up and down and quickly comes to rest.

(a) Mark on the graph a point labelled \mathbf{F}, where the weight stops falling freely.
(b) Mark on the graph a point labelled \mathbf{S}, where the weight finally comes to rest.
(c) Mark two points on the graph each labelled \mathbf{M}, where the weight is momentarily stationary.

Mark schemes

1 (a) from K to L
(d) the limit of proportionality is reached when a weight of 7 N is added to the spring accept any number from 6.8 to 7.2 inclusive
smaller than
(c) 4 N
(e) the extension is directly proportional to the weight.
(f) C

2 (a) Third Law
(b) elastic potential
(c) weight $=$ mass \times gravitational field strength
accept gravity for gravitational field strength
accept $W=m g$
accept correct rearrangement ie mass $=$ weight / gravitational field strength or $m=W / g$
(d) $343=m \times 9.8$
$m=\underline{343}$
9.8
$\mathrm{m}=35$
(e) force $=$ spring constant \times compression

$$
\begin{aligned}
& \text { accept force }=\text { spring constant } \times \text { extension } \\
& \text { accept } F=k e \\
& \text { accept correct rearrangement ie constant }=\text { force } / \text { extension or } k= \\
& F / e
\end{aligned}
$$

(f) compression $=0.07 \mathrm{~m}$

$$
343=k \times 0.07
$$

$$
k=343 \div 0.07
$$

$$
k=4900
$$

allow 4900 with no working shown for 4 marks allow 49 with no working shown for 3 marks

3 (a) accept any value between $12(\mathrm{~mm})$ and $13(\mathrm{~mm})$ inclusive
(b) to reduce the error in measuring the extension of the spring accept length for extension throughout
as the ruler at an angle would make the measured extensions shorter
(c) $1(\mathrm{~N})$ to $6(\mathrm{~N})$
accept from $0(N)$ to $6(N)$
(d) gives a straight line through the origin
(e) any practical technique that would improve the accuracy of length measurement eg use a set square
to line up the bottom of the spring with the ruler scale
or
attach a horizontal pointer to the bottom of the spring (1)
so that the pointer goes across the ruler scale (1)
(f) the spring has been inelastically deformed
because it went past its limit of proportionality
accept elastic limit for limit of proportionality
accept it does not go back to its original length when the weights are removed
(a) (i) any two from:

- length of coils increased
- coils have tilted
- length of loop(s) increased
- increased gap between coils
- spring has stretched / got longer
- spring has got thinner
(ii) remove mass
accept remove force / weight
observe if the spring returns to its original length / shape (then it is behaving elastically)
(b) (i) $8.0(\mathrm{~cm})$
extension is directly proportional to force (up to 4 N)
for every 1.0 N extension increases by 4.0 cm (up to 4 N)
evidence of processing figures eg 8.0 cm is half way between 4.0 cm and 12.0 cm
allow spring constant (k) goes from to $\frac{1}{4}$ to $\frac{5}{22}$
(ii) any value greater than 4.0 N and less than or equal to 5.0 N
the increase in extension is greater than 4 cm per 1.0 N (of force) added dependent on first mark
(c) (i) elastic potential energy
(ii) misread stopwatch
timed too many complete oscillations
(iii) 4.3 (s)
accept 4.33 (s)
(iv) stopwatch reads to 0.01 s
reaction time is about 0.2 s
or
reaction time is less precise than stopwatch
(v) use more masses
smaller masses eg 50 g not exceeding limit of proportionality either order
(ii) elastic potential (energy)
accept strain for elastic
(b) (i) mark both parts together
measured / recorded the length of the spring (and not extension) accept measured $\boldsymbol{A}-\boldsymbol{C}$ (and not $\boldsymbol{B}-\boldsymbol{C}$)
accept did not work out/measure the extension
extension does not equal zero when force $=0$
accept line should pass through the origin
(ii) point marked at $5.5(\mathrm{~N})$
accept any point between 5.0 and 5.6 inclusive
up to that point force and extension are (directly) proportional accept it's at the end of the straight part (of the graph line) accept past that point force and extension are no longer (directly) proportional
accept the line starts to curve

1
(c) 1.8
allow 1 mark for correct substitution, ie 25×0.072 provided no subsequent step shown
an answer 1800 gains 1 mark
an incorrect conversion from $m m$ to m with a subsequent correct calculation gains 1 mark
[8]

6 (a) (i) ammeter and battery in series with the gauge symbols must be correct
ignore a voltmeter drawn in series accept

not

or cells reversed to cancel out
voltmeter in parallel with the gauge symbol must be correct accept a freestanding circuit
diagram provided strain gauge is labelled or a resistor symbol used for the strain gauge
(ii) d.c. flows only in one direction
a.c. changes direction is insufficient
(b) (i) 75
this answer only
allow 1 mark for correct substitution and transformation, ie resistance $=\frac{3.0}{0.040}$
(ii) increases
(iii) elastic / strain potential do not accept potential
(a) B or bungee cords

C or springs or playground ride
each additional answer loses 1 mark minimum mark zero
will go back to original shape/size
(b) (i) newton
(ii) $0-5(\mathrm{~N})$ or 5 accept1-5 (N) do not accept 4
(iii) 16 (cm)
(iv) $2.5(\mathrm{~N})$
accept answer between 2.4 and 2.6 inclusive
weight or mass acts through pivot
accept rod or base for pivot
accept centre of gravity in line with pivot
no (resultant) (turning) moment
accept clockwise moment equals anticlockwise moment do not accept same weight on each side of rod
allow 1 mark for 2×15
or 2×0.15

Ncm
or
for full credit the unit must be consistent with the numerical answer
0.3

Nm
do not accept joules
(ii) $\quad 1.5(\mathrm{~N})$
allow 1 mark for correct transformation
allow 2 marks ecf their part (b)(i)/20 (ecf only if correct physics)
(c) $5(\mathrm{~cm})$
allow 1 mark for 6.0 (cm)
allow 1 mark for a subtraction of 1 from a value clearly obtained from the graph
allow 2 marks for correct ecf using an incorrect value for (b)(i) \pm 0.2 cm
allow 1 mark for clearly showing correct use of graph using an incorrect value for (b)(ii)

(a) (i) plasticine stretches/snaps stays stretched/snapped
for 1 mark each
(ii) spring compresses OWTTE returns to original length/shape or gets longer for 1 mark each
(iii) ruler bends/breaks returns to original shape or stays broken for 1 mark each
(b) (i) 1.5 N for 1 mark
(ii) 4 cm for 1 mark
(iii) 19 cm for 1 mark
(a) plasticine stretches/snaps stays stretched/snapped/same
for 1 mark each
(b) spring compresses OWTTE returns to original length/gets longer
for 1 mark each
(a) weight or gravity or gravitational for 1 mark
(b) (i) only force A acts / force A > air resistance / gravity / weight for 1 mark

1
(ii) force $\mathrm{A}>$ force B for 1 mark
(iii) force $\mathrm{C}>$ force A for 1 mark (Forces A, B and C need not be used, description of forces are OK)
(c) (i) graph points all correct \pm little square
gains 2 marks
one point wrong
gains 1 mark
2+ points wrong
gains 0 mark
appropriate line - good freehand OK
gains 1 mark
Bar chart gets 0, but if points clear can get 2
3
(ii) 16 or candidates own intercept should be 16 m in range 1-19 if no kinks on graph line for 1 mark
(a) 550 cm on first part of graph
tolerance + or - 3cm
(b) S at the far right
credit anywhere to right of last trough
(c) \mathbf{M} on any two tops of peaks or bottoms of troughs both are required for the mark M needs to be central to the trough or peak, except if F is in the way in one case

