The figure below shows an incomplete electromagnetic spectrum.
A microwaves
B
C
ultraviolet
D
gamma
(a) What name is given to the group of waves at the position labelled \mathbf{A} in the figure above?

Tick one box.
infrared

radio

visible light

X-ray

(b) Electromagnetic waves have many practical uses.

Draw one line from each type of electromagnetic wave to its use.

Electromagnetic wave

Use

For fibre optic communications

To see security markings

(c) Complete the sentence.

Use an answer from the box.

black body	ionising	nuclear

X-rays can be dangerous to people because X-rays are
\qquad radiation.

2 Light changes direction as it passes from one medium to another.
(a) Use the correct answer from the box to complete the sentence.

diffraction	reflection	refraction

The change of direction when light passes from one medium to another is called \qquad ..
(b) Draw a ring around the correct answer to complete the sentence.

When light passes from air into a glass block, it changes
\square
away from the normal.
direction
towards the normal.
to always travel along the normal.
(c) Diagram 1 shows light rays entering and passing through a lens.

Diagram 1

(i) Which type of lens is shown in Diagram 1?

Draw a ring around the correct answer.
concave convex diverging
(ii) In Diagram 1, what is the point \mathbf{X} called?
\qquad
(d) A lens acts like a number of prisms.

Diagram 2 shows two parallel rays of light entering and passing through prism \mathbf{A} and prism C.

Diagram 2

Draw a third parallel ray entering and passing through prism \mathbf{B}.
(e) What two factors determine the focal length of a lens?

1 \qquad

2 \qquad
(a) The visible light spectrum has a range of frequencies.

Figure 1 shows that the frequency increases from red light to violet light.
Figure 1

Use the correct answers from the box to complete the sentence.

decreases	stays the same	increases

As the frequency of the light waves increases, the wavelength
of the light waves \qquad and the energy of the light waves \qquad
(b) Bottled beer will spoil if the intensity of the light passing through the glass bottle into the beer is too high.

Figure 3 shows the intensity of the light that is transmitted through three different pieces of glass.

Figure 3

(i) The pieces of glass all had the same thickness.

Suggest why.
\qquad
\qquad
(ii) Bottles made of brown glass are suitable for storing beer.

Suggest why.
\qquad
\qquad

Stockdevil/iStock/Thinkstock
(a) Use the correct answers from the box to complete the sentence.

absorbs	ionises	reflects

When X-rays enter the human body, soft tissue \qquad X-rays
and bone \qquad X-rays.
(b) Complete the following sentence.

The X-rays affect photographic film in the same way that does.
(c) The table below shows the total dose of X-rays received by the human body when different parts are X-rayed.

Part of body X-rayed	Dose of X-rays received by human body in arbitrary units
Head	3
Chest	4
Pelvis	60

Calculate the number of head X-rays that are equal in dose to one pelvis X-ray.
\qquad
\qquad
\qquad
Number of head X-rays =
(d) Which one of the following is another use of X-rays?

Tick ($\sqrt{ }$) one box.
Cleaning stained teeth \square

Killing cancer cells \square

Scanning of unborn babies \square

5 (a) Some humans are short-sighted.
Complete the following sentence.
Short sight can be caused by the eyeball being too \qquad
(b) Spectacles can be worn to correct short sight.

The table below gives information about three different lenses that can be used in spectacles.

	Lens feature		
	Material	Mass in grams	Type
Lens A	Plastic	5.0	Concave (diverging)
Lens B	Glass	6.0	Convex (converging)
Lens C	Glass	5.5	Convex (converging)

Which lens from Table 2 would be used to correct short sight?
Draw a ring around the correct answer.
Lens A Lens B Lens C
Give the reason for your answer.
\qquad
\qquad
(c) Every lens has a focal length.

Which factor affects the focal length of a lens?
Tick ($\sqrt{ }$) one box.
The colour of the lens

The refractive index of the lens material \square

The size of the object being viewed \square
(d) A lens has a focal length of 0.25 metres.

Calculate the power of the lens.
\qquad
\qquad
\qquad
Power of lens $=$ \qquad dioptres
(e) Laser eye surgery can correct some types of eye defect.

Which of the following is another medical use for a laser?
Tick (\checkmark) one box.
Cauterising open blood vessels \square

Detecting broken bones \square

Imaging the lungs \square
(f) The figure shows a convex lens being used as a magnifying glass.

An object of height 14 mm is viewed through a magnifying glass.
The image height is 70 mm .
Calculate the magnification produced by the lens in the magnifying glass.
\qquad
\qquad
\qquad
Magnification $=$

Diagram 1

\mathbf{J}	\mathbf{K}	\mathbf{L}	Visible light	Infrared	Microwaves	Radio waves

(a) The four types of electromagnetic wave named in Diagram 1 above are used for communication.

(i) Which type of electromagnetic wave is used when a traffic signal communicates with a car driver?
\qquad
(ii) Which type of electromagnetic wave is used to communicate with a satellite in space?
\qquad
(b) Gamma rays are part of the electromagnetic spectrum.

Which letter, \mathbf{J}, \mathbf{K} or \mathbf{L}, shows the position of gamma rays in the electromagnetic spectrum?
Draw a ring around the correct answer.
J
K
L
(c) Diagram 2 shows an infrared wave.

Diagram 2

(i) Which one of the arrows, labelled A, B or \mathbf{C}, shows the wavelength of the wave?

Write the correct answer, A, B or \mathbf{C}, in the box.

(ii) Draw a ring around the correct answer to complete the sentence.

The wavelength of infrared waves is \begin{tabular}{l|l}
\hline shorter than

the same as

longer than

\quad

the wavelength of radio

waves.
\end{tabular}

(d) Mobile phone networks send signals using microwaves. Some people think the energy a person's head absorbs when using a mobile phone may be harmful to health.
(i) Scientists have compared the health of people who use mobile phones with the health of people who do not use mobile phones.

Which one of the following statements gives a reason why scientists have done this?
Tick (\checkmark) one box.

To find out if using a mobile phone is harmful to health. \square

To find out if mobile phones give out radiation. \square

To find out why some people are healthy.

(ii) The table gives the specific absorption rate (SAR) value for two different mobile phones.

The SAR value is a measure of the maximum energy a person's head absorbs when a mobile phone is used.

Mobile Phone	SAR value in W/kg
\mathbf{X}	0.28
\mathbf{Y}	1.35

A parent buys mobile phone \mathbf{X} for her daughter.
Using the information in the table, suggest why buying mobile phone \mathbf{X} was the best choice.
\qquad
\qquad
\qquad
\qquad

A person can see an image of himself in a tall plane mirror.

The diagram shows how the person can see his hat.
(a) Which point, \mathbf{A}, \mathbf{B} or \mathbf{C}, shows the position of the image of his hat?

Write the correct answer, \mathbf{A}, \mathbf{B} or \mathbf{C}, in the box.

(b) On the diagram, use a ruler to draw a light ray to show how the person can see his shoe.
(c) Which one of the words in the box is used to describe the image formed by a plane mirror?

Draw a ring around the correct answer.

imaginary	real	virtual

A lorry has an air horn. The air horn produces sound waves in the air.
(a) Use one word to complete the following sentence.

Sound waves cause air particles to \qquad
(b) The air horn produces sound waves at a constant frequency of 420 Hz .

The wavelength of the sound waves is 0.80 m .
Calculate the speed of the sound waves.
\qquad
\qquad
\qquad
Speed $=$ \qquad m / s
(a) The diagram shows the electromagnetic spectrum.

The pictures show four devices that use electromagnetic waves. Each device uses a different type of electromagnetic wave.

Draw a line from each device to the type of electromagnetic wave that it uses. One has been done for you.

Gamma rays	X-rays	Ultraviolet rays	Visible light	Infra red rays	Microwaves	Radio waves

(3)
(b) A headline from a recent newspaper article is shown below.

(i) What serious health problem may be caused by using a sunbed too much?
\qquad
(ii) The pie chart compares the number of deaths in Britain each year which may have been caused by using sunbeds too much, with those which may have been caused by too much exposure to the Sun.

\left.| Key |
| :---: |
| Deaths caused by too much |
| exposure to the Sun |$\right]$| Deaths due to using a |
| :--- |
| sunbed too much |

It is difficult for a doctor to be certain that a person has died because of using a sunbed too much.

Suggest why.
\qquad
\qquad
(iii) A spokesperson for a leading cancer charity said:
'We want people, especially young people, to know the possible dangers of using a sunbed.'

Why is it important that you know the possible dangers of using a sunbed?
\qquad
\qquad

- too many street lights often make it too light to see faint stars
- clouds reduce the light getting to the telescope
- atmospheric pollution often distorts the images.

Large optical telescopes are often positioned high up a mountain.
Describe the advantages of positioning a telescope high up a mountain.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(a) The diagram below shows six of the seven types of wave that make up the electromagnetic spectrum.

| Gamma
 rays | Ultraviolet | Visible
 light | Infrared | Microwaves | Radio
 waves |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |

(i) What type of electromagnetic wave is missing from the diagram?
\qquad
(ii) Which of the following electromagnetic waves has the most energy?

Draw a ring around the correct answer.

gamma rays radio waves visible light

(iii) Which of the following electromagnetic waves is given out by a TV remote control?

Draw a ring around the correct answer.

infrared microwaves ultraviolet

(b) Draw a ring around the correct answer in the box to complete the sentence.

(c) The diagram shows waves being produced on a rope.

The waves are not reflected by the wall.

(i) Draw an arrow on the diagram to show the direction in which the waves transfer energy.
(ii) Which one of the arrows, labelled, \mathbf{X}, \mathbf{Y} or \mathbf{Z}, shows the amplitude of a wave?

Write the correct answer in the box. \square
(iii) The waves produced on the rope are transverse.

Name one other type of transverse wave.
\qquad
(d) The rope is shaken up and down, producing 3 waves every second. The waves have a wavelength of 1.2 metres.
(i) State the frequency of the waves.

Hz
(ii) Calculate the speed of the waves.

Show clearly how you work out your answer.
\qquad
\qquad
Wave speed = \qquad m / s

12 The diagram shows a lens being used as a magnifying glass.

(a) (i) What type of lens is shown in the diagram?

Draw a circle around your answer.
concave converging diverging
(ii) Use the equation in the box to calculate the magnification produced by the lens.

The object and image in the diagram have been drawn to full size.

$$
\text { magnification }=\frac{\text { image height }}{\text { object height }}
$$

Show clearly how you work out your answer.
\qquad
\qquad
Magnification =
\qquad
(b) The diagram shows how the image changes when the object has been moved closer to the lens.

Complete the following sentence by drawing a ring around the correct line in the box.

by the lens.

13 At night, it is important that the lights of a car can be seen by other drivers but it is dangerous if these lights dazzle them.

The diagram shows a rear light of a car.

(a) (i) Name part A.
\qquad
(ii) Name the process which occurs at point \mathbf{B} and at point \mathbf{C}.
\qquad
(b) A headlamp of a car contains a lens.

The ray diagram shows the position and size of the image, \mathbf{I}, of an object, \mathbf{O}, formed by a lens similar to the one inside a car headlamp.

(i) What type of lens is shown in the ray diagram?

Draw a ring around your answer.
converging diverging plane
(ii) The ray diagram is drawn to scale.

Use the equation in the box to calculate the magnification produced by the lens.

$$
\text { magnification }=\frac{\text { image height }}{\text { object height }}
$$

Show clearly how you work out your answer.
\qquad
\qquad

> Magnification =
\qquad
(a) The diagram shows the percentages of visible light that are reflected and absorbed by one type of glass.

What percentage of visible light is transmitted by this type of glass?
\qquad
(b) The amounts of infra red radiation and visible light transmitted by glass depend on the type and thickness of glass. The data obtained from tests on two different types of glass is displayed in the graph below.

(i) To be able to compare the two types of glass, it was important to control one variable.

What variable was controlled in the tests?
\qquad
(ii) A homeowner has a glass conservatory built on the back of the house. The homeowner tells the builder that the inside of the conservatory should stay as cool as possible throughout the summer.

Explain why the builder uses 'type \mathbf{B} ' glass for the conservatory.
\qquad
\qquad
\qquad
\qquad
(a) The table gives information about the frequencies in the hearing ranges of six different mammals.

Name of mammal	Frequencies in hearing range
Bat	$20 \mathrm{~Hz} \rightarrow 160 \mathrm{kHz}$
Dog	$20 \mathrm{~Hz} \rightarrow 30 \mathrm{kHz}$
Dolphin	$40 \mathrm{~Hz} \rightarrow 110 \mathrm{kHz}$
Elephant	$5 \mathrm{~Hz} \rightarrow 10 \mathrm{kHz}$
Human	$20 \mathrm{~Hz} \rightarrow 20 \mathrm{kHz}$
Tiger	$30 \mathrm{~Hz} \rightarrow 50 \mathrm{kHz}$

(i) Which mammal in the table can hear the highest frequency?
\qquad
(ii) Which mammal in the table, apart from humans, cannot hear ultrasound?
\qquad
(iii) Give one example of a frequency which an elephant can hear but which a tiger cannot hear.

Include the unit in your answer.
Frequency \qquad
(b) The diagrams show six sound waves, A, B, C, D, E and F, represented on an oscilloscope screen.

They are all drawn to the same scale.

(i) Which one of the waves has the greatest amplitude?

Wave \qquad
(ii) Which one of the waves has the highest frequency?

Wave \qquad

16 The diagram shows the seven types of wave that make up the electromagnetic spectrum.

Gamma rays	X-rays	Ultraviolet rays	Visible light	Infra red rays	Micro- waves	Radio waves

(a) (i) Microwaves and visible light can be used for communications.

Name one more type of electromagnetic wave that can be used for communications.
(ii) Name one type of electromagnetic wave that has a longer wavelength than microwaves.
\qquad
(b) Wi-Fi is a system that joins a laptop computer to the internet without using wires. A 2400 megahertz microwave signal is used to link a computer to a device called a router.

What quantity is measured in hertz?
Draw a ring around your answer.
frequency wavelength wave speed
(c) A politician commented on the increasing use of Wi-Fi. He said: 'I believe that these systems may be harmful to children.'
(i) Suggest one reason why more scientific research into the safety of Wi-Fi systems is needed.
\qquad
\qquad
(ii) Complete the following sentence by drawing a ring around the correct line in the box.

What the politician said was | a fact. |
| :--- |
| an opinion. |
| a prediction. |

The table shows the electromagnetic spectrum.
Three types of wave have been missed out.

(i) Use words from the box to complete the table.
(ii) Which one of the following gives a use of gamma rays?

Put a tick $\left(r^{\prime}\right)$ in the box next to your choice.
to communicate with satellites

to see objects

to kill cancer cells \square
(iii) Complete the following sentence by drawing a ring around the correct word in the box.

All electromagnetic waves move | energy |
| :--- |
| gases |
| particles |\quad from one place to another.

A microphone and a cathode ray oscilloscope (CRO) can be used to show the pattern of a sound wave.

Four sound wave patterns, A, B, C and D, are shown.
They are all drawn to the same scale.

A

B

C

D
(a) Which one of the patterns has the smallest amplitude?
(b) Which one of the patterns has the lowest frequency? \qquad

A puppy can see an image of himself in a plane mirror.

The diagram shows how the puppy can see his disc.
(a) On the diagram, use a ruler to draw a ray to show how the puppy can see the top of his ear, which is marked as \mathbf{T}.
(b) What is a plane mirror?
\qquad
\qquad

20 In the diagram below, a frog sits on a rock in a pond.
(a) Complete the following sentences by drawing a ring around the correct line in the box.
(i) The frog can see its image in the pond because the surface of the pond acts

like a \begin{tabular}{|l|}

concave
convex
plane

\hline
\end{tabular} mirror.

(ii) Draw a ring around each of two words from the box below to describe the image in the pond.

bigger	inverted	real	smaller	upright	virtual

(b) There is an insect underneath the rock.

Use a ruler to draw rays of light on the diagram to show how the frog uses reflection to see the insect.

Mark the direction of the rays.

(a) Infra red radiation can be reflected, absorbed and transmitted by glass.

(i) What percentage of infra red is absorbed by the glass?
\qquad
(ii) Complete the following sentence by drawing a ring around the correct word or phrase.

Theabsorbed infra red | increases |
| :--- |
| does not change |
| decreases |\quad the temperature of the glass.

(b) Two of the following statements are true. One of the statements is false.

Tick (v^{\prime}) the boxes next to the two true statements.

All objectsabsorb infra red radiation.	
Blacksurfaces are poor emitters of infra red radiation.	
A hot objectemits more infra red than a cooler object.	

(c) The following statement is false.

Blacksurfaces are good reflectors of infra red radiation.

Change one word in this statement to make it true.
Write down your new statement.
\qquad
\qquad

(a) What type of lens is shown in the ray diagram?
\qquad
(b) Name the point labelled \mathbf{P}.
\qquad
(c) The ray diagram has been drawn to scale.

Use the equation to calculate the magnification.

$$
\text { magnification }=\frac{\text { image height }}{\text { object height }}
$$

Show clearly how you work out your answer.
\qquad
\qquad
Magnification $=$
(d) How can you tell from this ray diagram that the image is a real image?
\qquad
\qquad

The diagram shows a small part of the electromagnetic spectrum divided into seven sections. The different properties of the waves in each section make them useful in different ways.

The waves in which section, A, B, C, D, E, F or G, are:
(a) used to send a signal to a satellite in space
\qquad
(b) used to communicate with a submarine under the water
\qquad
(c) used by a radio station to broadcast programmes around the world
\qquad
(d) the waves with the shortest wavelength?
\qquad
(a) Mobile phones send digital signals using electromagnetic waves.
(i) Which one of the following types of electromagnetic wave is used to carry information between masts in a mobile phone network?

Draw a ring around your answer.

light	microwave	radio

(b) Some people worry that using a mobile phone may be bad for their health.

Look at this information taken from a recent newspaper article.

- Scientists in Sweden found that the regular use of a mobile phone increases the risk of a cancerous growth between the ear and the brain.
- Some people who use mobile phones for a long time complain of headaches and tiredness. The same effect has not been noticed in laboratory tests.
- There is no reliable evidence to link using mobile phones with ill health.
- The waves from a mobile phone are not strong enough to cause long-term heat damage to cells in the body.
(i) Complete the following sentence by drawing a ring around the word in the box that is correct.

The evidence from different scientists doing the same investigation is reliable if

(ii) What information in the article supports the idea that mobile phones are bad for your health?
\qquad
\qquad
\qquad
\qquad
(iii) Some scientists say that using a mobile phone is totally safe.

What information in the article supports this view?
\qquad
\qquad
\qquad
\qquad

The diagram shows four oscilloscope wave traces. The controls of the oscilloscope were the same for each wave trace.

Which one of the waves traces, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, has:
(i) the largest amplitude, \qquad
(ii) the lowest frequency?
(Total 2 marks)

26 (a) The diagram shows how parallel rays of light pass through a convex lens.
(i) Mark the position of the focus.

(ii) Is this a converging lens, a diverging lens, both or neither?
\qquad
(b) The diagram shows how parallel rays of light pass through a concave lens.
(i) Mark the position of the focus.

(ii) Is this a converging lens, a diverging lens, both or neither?
\qquad
(c) Complete these sentences by crossing out the two lines in each box that are wrong.

the lens, compared to the distance of the object
(d) In a cinema projector, a convex lens is used to produce a magnified, real image.

(i) What does magnified mean?
\qquad
\qquad
(ii) What is a real image?
\qquad
\qquad
(e) You are in a dark room. You have a box containing some lenses. Only one of them is a converging lens.

Describe how, by just feeling the lenses, you can pick out the converging lens.
\qquad
\qquad
\qquad
\qquad

The person who will take the X-ray and the person holding the horse are wearing special aprons. These aprons have a lead lining.

Explain why the lead lining is important.
To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(a) The diagram shows two parallel rays of light, a lens and its axis.
(i) Complete the diagram to show what happens to the rays.

(ii) Name the point where the rays come together.
\qquad
(iii) What word can be used to describe this type of lens?
\qquad
(b) The diagram shows two parallel rays of light, a lens and its axis.

(i) Which point $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ or \mathbf{E} shows the focal point for this diagram?

Point \qquad
(ii) Explain your answer to part (b)(i).
\qquad
\qquad
(iii) What word can be used to describe this type of lens?
\qquad
(c) Complete the following three sentences by crossing out the two lines in each box which are wrong
In a camera a converging lens is used to produce an image on a $\left.\begin{array}{|l|}\hline \text { film } \\ \text { lens } \\ \text { screen }\end{array}\right]$

The image is $\quad \begin{aligned} & \text { larger than } \\ & \text { smaller than } \\ & \text { the same size as }\end{aligned} \quad$ the object.

Compared to the distance of the image from the lens, the object is

further away from	
nearer to	the lens.
the same distance from	

(d) Explain the difference between a real image and a virtual image.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

29 (a) The diagram shows a wave pattern.

Which letter, L, M or \mathbf{N} shows:
(i) the wavelength? \qquad
(ii) the amplitude? \qquad
(c) Describe how you could show that visible light travels in straight lines. You may wish to draw a diagram to help explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad

30 (a) The diagram represents the electromagnetic spectrum. Four of the waves have not been named. Draw lines to join each of the waves to its correct position in the electromagnetic spectrum. One has been done for you.

(b) Complete the following sentence by choosing the correct answer and crossing out in the box the two lines which are wrong.

The speed of radio waves through a vacuum is | faster than |
| :---: |
| the same as |
| slower than |

light through a vacuum.
(d) The diagram shows an X-ray photograph of a broken leg.

Bones show up white on the photographic film. Explain why.
\qquad
\qquad
\qquad

31 (a) A swimming pool has a wave making machine. The diagram shows the water wave pattern for 3 seconds.

(i) How many water waves are shown in the diagram?
(ii) What is the frequency of the water waves?
\qquad
(iii) Which one of the units below is used to measure frequency? Underline your answer.
hertz joule watt
(b) The diagram shows the direction of the waves across the pool. The waves reflect off the side of the pool.

Draw a line on the diagram to show the direction of the waves after they hit the side of the pool.
(c) The swimming pool is used to test a model of an electricity generator. The waves make the floating generator move up and down. This energy is transferred to electricity.

(i) In the following sentence, cross out the two lines that are wrong in the box.

The diagram shoes that the amplitude of the waves | gets larger |
| :--- |
| stays the same |
| gets smaller |

pass the generator.
(ii) What type of energy does the generator transfer to electricity?
\qquad
(iii) Energy from ocean waves could be used to generate electricity. Would this be a renewable or non-renewable energy resource?
\qquad

An aquarium contains only one fish. But if you look at the comer of the aquarium, there seem to be two fish.

The diagram below shows the top of the aquarium.
Two light waves have been drawn from the fish.
(a) Complete the diagram to show how the light waves reach the eye.

(b) Complete each sentence by using the correct words from the box.

colour diffraction longitudinal reflection		
refraction	speed	transverse

When the light waves pass from glass into the air they change \qquad
This causes a change in direction called \qquad
Light waves are \qquad waves.
(a) The diagram shows what happens to a ray of light as it travels through a glass prism.

To gain full marks for this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.

Use the words in the box to help you to explain why the ray behaves in this way.
angle critical normal
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Periscopes can be used to look over the heads of other people.

A periscope contains two glass prisms.
Complete the diagram to show the ray of light reaching the person's eye.

34 (a) The diagram shows two mirrors at right angles to each other. A ray of light shines onto one mirror as shown.

Carefully draw the path of the ray which is reflected from both mirrors.
Draw an arrow on the ray to show the direction of the light.

(b) Light can also be made to change direction as it passes into and out from a block of glass. Complete the ray diagram below.

(2)
(Total 5 marks)

A man is walking along the bank of a river.
He sees a fish which seems to be at X.

(a) Show, on the diagram, where the fish really is.

Complete the ray of light which goes from the fish into the man's eye.
(b) Complete the sentence.

The ray of light is \qquad as it passes from the water into the air.

36 The diagram shows some of the kinds of waves in the electromagnetic spectrum. Choose words from this list to complete the empty boxes on the diagram.

alpha radiation	infrared radiation		radio waves	X-rays
Shortest wavelength				Longest wavelength
$\begin{aligned} & \text { gamma } \\ & \text { radiation } \end{aligned}$	ultraviolet radiation	light	microwaves	

(Total 3 marks)

37 The diagram shows a ray of light travelling through a glass block.

(a) Complete the diagram to show what happens to the ray of light when it comes out of the glass.
(2)
(b) Explain why this happens to the ray of light.

Mark schemes

(a) radio
(b)

award 1 mark for each correct line
if more than one line is drawn from any em wave then none of those lines gain credit
(c) ionising

2 (a) refraction
(b) towards the normal
(c) (i) convex
(ii) principal focus accept focal point
(d) parallel on left
refracted towards the normal at first surface
refraction away from normal at second surface
passes through or heads towards principal focus
(e) refractive index
accept material from which it is made
(radius of) curvature (of the sides) accept shape / radius do not accept power of lens ignore thickness / length

1
[10]
3 (a) decreases correct order only
increases
(b) (i) intensity (of transmitted light) depends on thickness
or
to enable a valid comparison
or
it is a control variable
accept absorption depends on thickness it would affect the results is insufficient fair test is insufficient
(ii) transmits the least light
or
absorbs the most light
accept very little light is transmitted
do not accept transmits none of the light
do not accept absorbs all of the light
any reference to heat negates this mark

4 (a) transmits correct order
absorbs
(b) light
allow ultra violet or UV or infrared or IR or gamma

$$
-\operatorname{lot}+2
$$

(c) 20
allow 1 mark for correct working, ie $\frac{60}{3}$ provided no subsequent step
(d) Killing cancer cells
(a) long
(b) lens A
it is a concave / diverging lens
this mark is only gained if lens A is stated
any reference to lens material or mass of lens negates this mark allow it will focus light onto the retina
(c) The refractive index of the lens material
(d) 4
ignore any signs
allow 1 mark for correct substitution, ie $\frac{1}{0.25}$ provided no subsequent step
(e) Cauterising open blood vessels
(f) 5
allow 1 mark for correct substitution, ie $\frac{70}{14}$ provided no subsequent step
(a) (i) (visible) light
accept visible
(ii) microwaves
(b) J
(c) (i) B
(ii) shorter than
(d) (i) To find out if using a mobile phone is harmful to health
(ii) any two from:

- (X has a) low(er) SAR value
"it" refers to mobile phone
accept has a low(er) rate
- (maximum) energy absorbed (by the head) is less
accept energy emitted (by phone) is less
accept radiation for energy
- (if mobiles are harmful) less likely to cause harm
accept will not cause harm
accept it is safer
2
[8]

7
(a) C
(b) reflection at the mirror of ray from shoe to person's eye may be drawn freehand
angle of incidence $=$ angle of reflection
judged by eye
a ruler must have been used
arrow to show correct direction on either incident or reflected ray only one arrow needed but if more drawn must be no contradiction both incident and reflected ray must be shown

(c) virtual

8 (a) vibrate / oscillate accept a correct description move is insufficient
(b) 336
allow 1 mark for correct substitution, ie $420 \times 0.8(0)$ provided no subsequent step shown

9 (a) all three lines correct

allow 1 mark for each correct line
if more than one line goes from a device then all lines from that device are wrong
(b) (i) skin cancer
do not accept cancer
do not accept sunburn
correct answer only
1
(ii) other factors may be involved
accept may have been in the Sun too long
accept (over)-use of sunbeds and (over)- exposure to the Sun (both) give the same symptoms accept any other sensible factor that could lead to doubt do not accept irrelevant answers eg may be run over by a car do not accept killed by exposure to the Sun
(iii) can assess risk
answers should be in terms of assessing our own health risk
or
make your own decision
accept so you limit its use / don't use one
do not accept so you don't get skin cancer
do not accept so you don't get sunburn
less / no light pollution
accept no / fewer streetlights
less cloud cover / above clouds
less atmospheric pollution
accept air for atmosphere
accept idea of thinner atmosphere
do not accept closer to stars

11 (a) (i) X-ray(s)
(ii) gamma rays
(iii) infrared
(b) the same speed as
(c) (i) horizontal arrow drawn pointing to the right
judge by eye
accept drawn anywhere on diagram
(ii) \mathbf{Y}
(iii) any one from:

- any type of electromagnetic wave accept electromagnetic wave(s)
- water (wave)
do not accept seismic waves
- (earthquake / seismic) S waves
do not accept P waves
do not accept earthquakes
(d) (i) 3
(ii) 3.6
or
their (d)(i) $\times 1.2$ correctly calculated
$v=f \times \lambda$
allow 1 mark for correct substitution ie 3 or their (d)(i) $\times 1.2$ provided that no subsequent step is shown

12 (a) (i) converging
(ii) $(x) 2$
allow 1 mark for correct substitution ie 10/5 or 20/10 or 2/1
ignore any units
(b) decreases

13 (a) (i) (concave) mirror / reflector do not allow convex mirror / reflector
(ii) refraction
(b) (i) converging
(ii) 4
allow 1 mark for correct substitution
ie 20 / 5 or 4 / 1
ignore any units
(a) 85
(b) (i) thickness (of glass)
accept how thick the glass is
do not accept light intensity
(ii) transmits less infra red accept radiation / or heat for infra red accept transmits less energy (at all wavelengths) accept (glass B) absorbs more infra red accept infra red is the same as heat ignore reference to visible light
infra red has a heating effect
or
infra red warms the room
ignore references to conservatory
keeping cool

15 (a) (i) bat(s)
(ii) elephant(s)
(iii) any example in the inclusive range $5 \leftrightarrow 29 \mathrm{~Hz} /$ hertz appropriate number and unit both required
(b) (i) B
(ii) \mathbf{F}

16 (a) (i) infra red (rays) or radio (waves) do not accept heat waves do not accept $T V$ waves
(ii) radio (waves)
this answer only
(b) frequency
(c) (i) answer should be in terms of establishing if harmful or not harmful ie trying to clear up any uncertainty
do not accept answers that assume it is harmful eg Wi-Fi systems will make you ill need to know if it is harmful / makes you ill accept idea that safety issue may worry people accept idea that (more) research may reassure people accept idea of finding out (the truth)
(ii) an opinion

17
(i) X -rays
infra red (rays)
radio (waves)
all three in correct order
allow 1 mark for 1 correct
(ii) to kill cancer cells
(iii) energy

18 (a) C (only)
(b) A (only)

1
[2]
(a) reflection at the mirror of ray from tip of real puppy's ear to real puppy's eye (1) may be drawn freehand
accurate (1)
ruler must have been used and the reflected ray is an extension of the straight line from point virtual ear however the virtual part of the line need not be shown
arrow to show correct direction (1)
only one arrow needs to be shown but there must be no contradiction
example of (3) mark response

(b) flat
accept it's not curved/bent' accept 'it's straight'
(ii) inverted
reflection takes place at the surface of the pond and angle of incidence = angle of reflection
as judged by eye correct direction arrow either from insect or to frog's eye only one arrow essential but do not accept if either arrow contradicted example of a fully correct response

Water

reflected ray is a straight line to frog's eye through the air

(a) (i) 25 (\%)
(ii) increases
(b) tick (r) in top and bottom box both required
(c) SHINY surfaces are good reflectors of infra-red radiation accept white for shiny
or black surfaces are POOR reflectors of infra-red radiation accept bad for poor accept insertion of 'not' before 'good' in statement
or black surfaces are good EMITTERS of infra-red radiation
or black surfaces are good ABSORBERS of infra red radiation
(b) (principal) focus
or focal point
(d) real rays cross to form it / formed at the intersection of real rays accept 'image on the opposite side of the lens to the object' accept 'can be put onto a screen'
(a) (i) microwave
(b) (i) identical
(ii) • increased risk of cancerous growth (between ear and brain)

- complaints of headaches and tiredness
(iii) any two from:
- tests in a laboratory did not give effects of tiredness or headaches
- waves not strong enough to cause long term heat damage to cells
- evidence to link mobile phones and ill health is not reliable

25 (i) B
(ii) A
(a) (i) point where the rays cross
do not credit if ambiguous
(ii) converging (lens)
do not accept convex
(b) (i) point where the rays appear to diverge from
this should appear to be within 10 mm in front of the back of the arrows on the approximate centre line
need not be accurately constructed using a ruler
(ii) diverging (lens)
do not accept concave
(c) converging
film
smaller than
nearer to
accept any clear indication of the response e.g. ticking, ringing, writing in after a mistake

1

1
thickest in the middle gains 2 marks
or (both) sides bend outwards (1) in the middle (1)
convex gains 2 marks
suitable diagrams gains 2 marks
or one side bends in the middle (1) more than the other side bends inwards (in the middle) (1)

X-rays do not go through lead
accept lead protects them from the X-rays
accept not exposed to X-rays
lead stops / reduces risk of X-rays harming / damaging / killing (persons) cells
accept X-rays (may) cause cancer
accept organs for cell do not accept references to electric shock do not accept stops bones of people showing on X-ray answers involving the horse wearing an apron are incorrect references to gamma rays are incorrect
(a) (i) rays continued to meet on the right hand side of the lens and beyond must be straight lines from the right hand side of the lens ignore details through the lens allow if no arrows
meet exactly on the axis
negate mark if contradictory arrow(s) added do not need to go beyond the focus for this mark
(ii) (principal) focus
or focal (point)
(iii) converging
or convex
(b) (i) \mathbf{A}
(ii) rays seem to come from this point
or words to this effect
or shows this on the diagram
(iii) diverging
or concave
(c) film
smaller than

1
further away from
(d) any three from:

- real image can be put on a screen
allow film
- virtual image cannot be put on a screen / film
- virtual image is imaginary
- real image is formed where (real) rays cross / converge
allow real image has light travelling through it
- \quad virtual image is where virtual / imaginary rays (seem to) come from
or virtual image is where rays seem to come from
- virtual image formed where virtual rays intersect / cross

29 (a) (i) L
(ii) N
(c) the answer should be in the form:
not inside the eye
either for both marks an arrangement which could demonstrate visibly light travels in straight lines
full credit should be given for answer presented as a diagram
and
an explanation of how it shows the straightness
or for one mark
named device which uses principle of light travelling in straight lines to work examples
light (from a street lamp) strikes an object producing a shadow laser light travelling through (fine) dust shows a straight beam three pieces of card with central holes need to be lined up to be able to see through the third hole from the first
ray box type experiment using mirrors/prisms, etc beams on paper or in smoke
torch beams through smoke
example devices:-
-pinhole camera (qualification may get second mark)
-periscope
-optical fibre
-reflection in a mirror
(b) the same as
(d) any two from:

- bones absorb X-rays
- so film not exposed
- X-rays pass through flesh or skin or
- body or tissue (to expose film)
allow X-rays cannot pass through bones
(ii) 1 accept a definition of frequency ignore units
(iii) hertz
(b) straight line in correct direction
judge by eye (from 'a' of waves to 's' of across) ignore arrow accept equal angles shown on waves
(c) (i) gets smaller
(ii) kinetic accept movement
(iii) renewable
(a) one mark for each ray correctly drawn straight to glass then bent towards pupil accept both rays hitting any part of eye judge straightness by eye accept dotted or dashed lines ignore any arrows
$N . B$. the rays must reach the eye
(b) speed
refraction
transverse

33 (a) Quality of written communication:
Correct use of 2 of the words, angle, critical, normal and reflection
any two from

- light is reflected / bounces off
- if angle between ray and normal angle of incidence
- is greater than critical angle
- idea that no refraction bending if ray at 90°
(b)

1 mark for reflection at \boldsymbol{X} if ray would reach the lower prism 1 mark for subsequent reflection at \boldsymbol{Y} 1 mark for subsequent ray emerging from prism in direction of front of eye accept dotted or dashed lines ignore any arrows
[6]

34 (a) first reflection vertically down to the fourth hatch line or just to the left of it reaching mirror (must come from incident ray given)

second reflection back parallel to incident ray must be linked to first part of ray
appropriate arrow on a part of the ray (may be given if lines wrong)
(must come from source of light)
maximum of one mark to be lost for poor diagrams not using a ruler for straight lines
first time you come across wavy line, it is penalised
(b) ray in block bent downwards, not beyond the normal
do not credit if exactly on normal
emergent ray parallel to incident ray
do not credit a continuation of the line straight through the block these are independent
(b) bent/refracted/deviated/speeded up
for 1 mark

36
X-rays $\quad\left\{\begin{array}{c}\text { infrared } \\ \text { radiation }\end{array}\right\} \quad\left\{\begin{array}{l}\text { radio } \\ \text { waves }\end{array}\right\}$
for 1 mark each
(a) ray shown refracted (to rhs or along normal) gains 1 mark
but
ray shown refracted away from normal
gains 2 marks
(b) idea that
travels at a different speed
gains 1 mark
(allow refracted / travels slower in air / air is less dense) (do not allow bent)
but
travels more quickly in air gains 2 marks

