Imaging and signalling

curvature $=1$ /radius
lens power $=1$ / focal length
information in image $=$ number of pixels x bits per pixel
resolution of image $=$ width of an object $/$ number of pixels across the object
resolution of signal $=$ p.d. range of signal / number of bits per sample
minimum sampling rate $>2 x$ highest frequency in signal
bit rate of signal $=$ samples per second x bits per sample
duration of signal = number of bits in message / bit rate

Electricity

$\mathrm{V}=\mathrm{IR}$
$R=1 / G$
$\mathrm{G}=\mathrm{I} / \mathrm{V}$
$P=E / t$
$\mathrm{V}_{1} / \mathrm{V}_{2}=\mathrm{R}_{1} / \mathrm{R}_{2}$ in potential divider
$\mathrm{RC}=$ time constant
$\mathrm{T}_{1 / 2}=\ln 2 R C$

Materials

density = mass $/$ volume

Gases

$P \propto 1 / V$
$V \propto T$
$\mathrm{P} \propto \mathrm{T}$
distance $=\sqrt{ } \mathrm{N} \times$ step length
$1 / 2 \mathrm{mv}^{2}=3 / 2 \mathrm{kT} \quad$ (= $=3 / 2$ RT per mole)
$\mathrm{R}=\mathrm{k} \mathrm{N}_{\mathrm{A}}\left(8.31=1.38 \times 10^{-23} \times 6.02 \times 10^{23}\right)$

Motion and Forces

$s=1 / 2(v+u) t$
$m_{1} v_{1}=m_{2} v_{2}$ conservation of momentum
$\mathrm{F}=\mathrm{ma}$
$\mathrm{E}_{\mathrm{k}}=1 / 2 m v^{2}$
$\Delta \mathrm{E}_{\text {grav }}=\mathrm{mg} \Delta \mathrm{h}$ for constant g near surface
$\Delta \theta=v \Delta t / r$
$\omega=2 \pi f$
$a=\omega^{2} r$
$\mathrm{v}=\omega \mathrm{r}$

Waves

$\lambda_{\text {fundamental }}=4 L$ for pipe with closed end $\lambda_{\text {fundamental }}=2$ for pipe with open ends
$\lambda_{\text {fundamental }}=2 L$ for string
$\mathrm{n}=\mathrm{c}$ in vacuum / c in material
$\mathrm{n} \lambda=\mathrm{dx} / \mathrm{L}$
maximum $n=d / \lambda(\sin 90=1)$

Atomic and nuclear physics

$A=A_{0} e^{-\lambda t}$
$A=-\lambda N$
Fraction remaining $=1 / 2^{\text {half-lives }}$
$\ln N / \ln N_{0}=-\lambda t$
$p \approx E_{\text {total }} / c$
$\mathrm{E}=\mathrm{hc} / \lambda$
$\lambda=h / m v$
$\mathrm{E}_{\mathrm{k}}(\mathrm{max})=\mathrm{hf}-\phi$
$\mathrm{E}=\mathrm{qV}$

Field and potential
$W=V q$
$\mathrm{V}=\mathrm{qEd}$
$E=k q / r^{2}$
$\mathrm{g}=-\mathrm{GM} / \mathrm{r}^{2}$
$v_{\text {esc }}=\sqrt{ }(2 G M / r)$

Electromagnetism

$\Phi N=B A N$
$\mathrm{V}_{\mathrm{p}} / \mathrm{V}_{\mathrm{s}}=\mathrm{N}_{\mathrm{p}} / \mathrm{N}_{\mathrm{s}}$ for transformer
$\varepsilon=\mathrm{vLB}$

Universe

$v=\mathrm{H}_{0} \mathrm{~d}$
age $=1 / H_{0}$
red shift $z=\Delta \lambda / \lambda=v / c$
$z+1=r_{\text {now }} / r_{\text {then }}$
$\mathrm{t}=\gamma \tau$
root mean square $=\sqrt{ }\left(\right.$ mean of $\left(\right.$ values $\left.\left.^{2}\right)\right)$
angle \approx short side / long side

