Electricity Sensing Waves and Quantum

1. A current of $3.0 \mu \mathrm{~A}$ flows through a resistor in 1.5 minutes.

How much charge flows through the resistor in this time?
A $\quad 4.5 \times 10^{-6} \mathrm{C}$
B $\quad 2.7 \times 10^{-4} \mathrm{C}$

C $\quad 4.5 \times 10^{-3} \mathrm{C}$

D $\quad 2.7 \times 10^{-1} \mathrm{C}$
Your answer
2. In the circuit shown, a potential difference of 3 V is applied across $\mathbf{X Y}$.

What is the current in the 5Ω resistor?

A
$\frac{15}{8} A$
B

$$
\frac{3}{4} \mathrm{~A}
$$

C

$$
\frac{3}{5} \mathrm{~A}
$$

D $\quad \frac{3}{8} \mathrm{~A}$
3. A potential divider is used to give outputs of 2 V and 3 V from a 5 V source as shown..

Which combination of resistors R_{1}, R_{2}, R_{3}, gives the correct voltages?

	$\boldsymbol{R}_{\mathbf{1}} / \mathbf{k} \boldsymbol{\Omega}$	$\boldsymbol{R}_{\mathbf{2}} / \mathbf{k} \boldsymbol{\Omega}$	$\boldsymbol{R}_{\mathbf{3}} / \mathbf{k} \boldsymbol{\Omega}$
A	1	1	2
B	2	1	2
C	3	2	2
D	3	2	3

4. The resistors \mathbf{P}, \mathbf{Q} and \mathbf{R} in the circuit have equal resistance.

The battery, of negligible internal resistance, supplies a total power of 12 W .
What is the power dissipated in resistor R ?
A $\quad 2 \mathrm{~W}$

B $\quad 3 \mathrm{~W}$
C $\quad 4 \mathrm{~W}$
D $\quad 5 \mathrm{~W}$
5. Two conductors, of conductances 0.24 S and 0.36 S , are connected in parallel to a 4.5 V battery of negligible internal resistance as shown below.

A $\quad 2.9 \mathrm{~W}$

B $\quad 4.9 \mathrm{~W}$

C \quad 7.3 W

D $\quad 12 \mathrm{~W}$
6. An unknown resistor R and a 220Ω resistor are connected to a 6.0 V battery of negligible internal resistance as shown in the diagram below.

What is the reading on the ammeter?
A $\quad 8.6 \mathrm{~mA}$

B $\quad 13 \mathrm{~mA}$

C $\quad 19 \mathrm{~mA}$

D $\quad 27 \mathrm{~mA}$
7. A student wants to determine the threshold voltage of a light-emitting diode (LED). During the investigation the LED is lit. The student then attempts to draw the circuit he has used as shown below.

What mistake has the student has made in his circuit diagram?

A The ammeter should be before the LED and resistor.

B The fixed resistor should be in parallel with the LED.
C The LED is the incorrect way around.
D The voltmeter connections are incorrect.

8. A battery is connected across resistor \mathbf{R} via a switch \mathbf{S}.

The switch \mathbf{S} is open. The voltmeter reading is 9.0 V and the ammeter reading is zero.
With \mathbf{S} closed, the voltmeter reading is 6.0 V and ammeter reading is 2.0 A .
What is the internal resistance of the battery?

A 1.5Ω

B 3.0Ω

C 4.5Ω

D $\quad 6.0 \Omega$
9. A 14 V d.c. supply is used to charge a 12 V car battery of internal resistance 0.80Ω at a rate of 2.5 A for 6 hours.

How much electrical energy is provided by the charging supply?
A $\quad 13 \mathrm{~kJ}$

B 110 kJ

C $\quad 650 \mathrm{~kJ}$

D $\quad 760 \mathrm{~kJ}$

10. The y-input terminals of an oscilloscope are connected to a voltage supply of peak value 5.0 V and frequency 50 Hz .

The time-base is set at 10 ms per division and the y axis is set at 5.0 V per division.
Assuming that these diagrams are to scale, which trace will be obtained?
A

B

C
D
Your answer
11. Water waves of wavelength 4 m are produced by two wave generators, $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$, as shown.

Each generator, when operated by itself, produces waves which have an amplitude A at \mathbf{P}, which is 3 m from $\mathbf{S}_{\mathbf{1}}$ and 5 m from $\mathbf{S}_{\mathbf{2}}$.

When the in phase, what is oscillation at \mathbf{P} ?

generators are operated the amplitude of

A 0

B $\quad 1 / 2 A$

C A

D $\quad 2 A$
12. Which group of electromagnetic waves is arranged in order of increasing frequency? lowest frequency \longrightarrow highest frequency

A gamma rays, ultra-violet rays, radio waves

B microwaves, ultra-violet rays, X -rays

C radio waves, visible light, infra-red radiation
D Visible light, infra-red radiation, microwaves

Your answer
13. In the diagram, \mathbf{T} represents a transmitter of microwaves and \mathbf{P} represents a metal plate.

The detector is connected to a meter which gives a reading proportional to the signal strength at that point. The distance TP is much greater than the wavelength of the microwaves.

As the detector is moved from \mathbf{T} to \mathbf{P} what happens to the meter reading?

A It decreases steadily
B It reaches a maximum at \mathbf{P}

C It reaches a maximum midway between \mathbf{T} and \mathbf{P}

D It increases and decreases rapidly
14. Light of wavelength 600 nm falls on a pair of slits, forming fringes 3.00 mm apart on a screen. What would the fringe spacing become if the wavelength were 300 nm ?

A $\quad 0.75 \mathrm{~mm}$

B $\quad 1.50 \mathrm{~mm}$

C $\quad 3.00 \mathrm{~mm}$

D $\quad 6.00 \mathrm{~mm}$

Your answer
15. A ray of light passes from air into a rectangular glass block.

The refractive index of the glass is:
A 0.53
B 0.82

C $\quad 1.2$

D $\quad 1.9$
16. A lamp is placed 0.50 m from a converging lens. The power of the lens is +5.0 D . What is the distance from the lens to the focused image?

A $\quad 0.14 \mathrm{~m}$

B $\quad 0.20 \mathrm{~m}$
C $\quad 0.33 \mathrm{~m}$
D $\quad 0.45 \mathrm{~m}$
17. The diagram shows five energy levels of electrons within an atom. Five possible transitions between the levels are indicated. Each transition produces a photon of specific energy and frequency.

Which of the following the transition shown? increasing frequency

A

B

C

D

Your answer
18. The up quark (u) has charge $+2 / 3 e$ and the down quark (d) a charge of $-1 / 3 e$.

What is the correct combination of quarks that make up the proton and the neutron?
proton

A ddd uud
A ddd uud
neutron

B
udd
uud

C uud udd

D
ddd
19. An electron has a kinetic energy of $2.0 \times 10^{-17} \mathrm{~J}$.

The mass of an electron is $9.1 \times 10^{-31} \mathrm{~kg}$.
What is the value for the de Broglie wavelength of the electron?
A $\quad 1.1 \times 10^{-10}$

B $\quad 1.5 \times 10^{-10} \mathrm{~m}$

C $\quad 3.3 \times 10^{-17} \mathrm{~m}$

D $\quad 6.6 \times 10^{-17} \mathrm{~m}$
20. Which curve shows the relationship between the energy E and the wavelength λ of a photon of electromagnetic radiation?
A

B

D

Your answer

