Oxford Cambridge and RSA

June Practice 2

A GCE Physics B H557/01
Paper 1 Fundamentals of Physics

MARK SCHEME

MAXIMUM MARK 110

\square FINAL

Section A: MCQs

Section B

Question			Answer	Marks	Guidance
31	(a)		$\begin{aligned} & \left(-6.67 \times 10^{-11} \times 6.0 \times 10^{24} / 6.4 \times 10^{6}\right)^{\checkmark} \\ & =-62.5(3)(\mathrm{MJ} \mathrm{~kg} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	evaluation accept $62.5\left(\mathrm{MJ} \mathrm{kg}^{-1}\right)$ RE show that must have at least 3 SF
31	(b)		circular shape at 4 Earth radii from centre of Earth	L M	judged by eye but must have all four axis intercepts equal not at 4 Earth radii from surface
31	(c)		$\begin{aligned} & g=9.81 / 4^{2} \\ & =0.6(13) \mathrm{Nkg}^{-1} \end{aligned}$	M M	method : use of inverse squared law OR $g \propto 1 / R^{2}$ accept full calculation at $R=4 \times 6.4 \times 10^{6} \mathrm{~m}$ evaluation
			Total	6	

Question		Answer	Marks	Guidance
32	(a)	$\begin{aligned} & 0.40 \times 0.36=M_{\text {TOTAL }} \times 0.16 \\ & M_{\text {TOTAL }}=0.90 \mathrm{~kg} \therefore M_{\text {STAT }}(=0.90-0.40)=0.50 \mathrm{~kg} \end{aligned}$	L \mathbf{M}	method must use / imply conservation of momentum
32	(b)	moving glider $F \Delta t=m \Delta v=0.40 \times[0.16-0.36]$ $=-0.08(\mathrm{~N} \mathrm{~s})$ OR state glider $m \Delta v=0.50 \times[0.16-0]=+0.08(\mathrm{~N} \mathrm{~s})$	M M	method must use / imply impulse = change in momentum evaluation for show that ignore signs \pm magnitude only required
		Total	4	

Question		Answer	Marks	Guidance
33	(a)	the charge remains constant during the interval $\Delta t \quad \checkmark$	M	accept the current remains constant
33	(b)	using smaller Δt means better approximation to constant current during interval so overestimate of charge leaving during Δt is smaller error \checkmark	L	state explain
33	(c)	$\begin{aligned} & \Delta Q_{\text {Lost }}=30 \times 10 / 25=12(\mathrm{mC}) \\ & Q_{\text {REMAINING }}=30-12=18(\mathrm{mC}) \end{aligned}$	L M	no ecf
		Total	5	

Question		Answer	Marks	Guidance
34	(a)	$\begin{aligned} & \sin r=\sin 90^{\circ} / 1.00029 \\ & r=88.6\left(2^{\circ}\right) \end{aligned}$	$\begin{aligned} & \text { S\&C } \\ & \text { S\&C } \end{aligned}$	method S\&C because such unusual context, application and precision evaluation
34	(b)	Sun will be seen above the horizon when actually below Because the light from below is refracted/bent so that it appears to come from above	$\begin{aligned} & \mathrm{M} \\ & \mathrm{H} \end{aligned}$	accept virtual image of Sun seen above its real position Sun sets late accept diagram
34	(c)	ray would curve / bend downwards because it meet denser more refractive layers of Earth's atmosphere	$\begin{aligned} & \mathrm{M} \\ & \mathrm{H} \end{aligned}$	accept it would curve, refracting more closer to Earth
		Total	6	

Section C

Question		Answer	Marks	Guidance
36*		Level 3 (5-6 marks) Marshals argument in a clear manner and includes clear explanation of three strands: - describing a resonance experiment - simple harmonic oscillator and meaning of resonance - typical results including the effect of damping There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Shows clear understanding of at least two of the three strands above to the argument or covers all three at a superficial manner and does not include enough indicative points for level 3. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Makes at least two independent points that are relevant to the argument but does not link them together and shows only superficial engagement with the argument. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be	HH	Indicative scientific points may include: resonance experiment mechanical or electrical oscillator - labelled diagram of hacksaw oscillator driven by massive pendulum or electromagnet coil OR - mass on vertical spring driven by signal generator OR - resonant bottle driven by small speaker OR - LCR circuit driven by sig. gen. OR - Barton's pendulums - coupling by spring / magnetic force - varying driving frequency through natural frequency - measuring the amplitude or phase response - how to vary damping by air resistive force on card mechanically OR accept by resistance R in LCR circuit resonance - the large increase in A as $f_{\text {DRIVER }} \approx f_{\text {NATURAL }}$ - maximum energy transfer - analogy of child on swing driven by regular pushes - the phase relationship between driver and driven changing through resonance

Question	Answer	Marks	Guidance
	clear. 0 marks No response or no response worthy of credit		typical results including the effect of damping - graphs or description of response curve - typical resonance peak curves - broadening and lowering of peak due to damping - $\pi / 2$ phase shift at resonance driver leading driven - in phase at lower f or out of phase at higher f - effect of damping on steepness of phase transition
	Total	6	

Question		Answer	Marks	Guidance
37	(a)	gravitational E_{P} gained $=$ elastic E_{P} in spring $\begin{aligned} & h=F x /[2 \mathrm{mg}]=18 \times 0.25 /[2 \times 0.030 \times 9.81] \\ & =7.7(\mathrm{~m}) \quad \checkmark \end{aligned}$	L M M	principle make conservation of energy clear accept correct ref to E_{k} or to work done accept $m g h=\left(1 / 2 m v^{2}\right)=1 / 2 F x$ evaluation
37	(b)	spring contains some E_{k} at point of launch / some E_{k} of rocket transferred to air by air resistance / friction against walls of tube results in temperature increase So less energy transferred to E_{P} and so height less	L L	not just all energy is not transferred must identify the energy transfer accept work done against air resistance.
37	(c)	EITHER ball bearing reaches higher \checkmark because smaller surface area / less air resistance / less energy transferred to air by air resistance OR lower because larger surface area / less streamlined \checkmark more air resistance /more energy transferred or work done against air resistance \checkmark	M M	ignore has same launch velocity
		Total	7	

Question			Answer	Marks	Guidance
38	(a)	(i)	to create a metal resistor of reasonable resistance in a small sized device	L	accept to get a long length / small x-sectional area in a compact device
38	(a)	(ii)	resistance of connecting leads / contact resistance \checkmark	L	accept contact / thermal e.m.f. offsets Ohmmeter reading not within the limits of experimental accuracy
38	(b)	(i)	$\begin{aligned} & \text { sensitivity }=\Delta \mathrm{V} / \Delta \varepsilon \quad \mathrm{OR}=0.006 / 0.002 \\ & =3.0 \quad(\mathrm{~V} \text { per unit strain }) \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{H} \end{aligned}$	method accept in numbers / gradient evaluation allow 1 mark for 0.030 POT
38	(b)	(ii)	T increases ρ and R T increases dimensions of wire R would decrease due to expansion alone because $\%$ increase in L is $1 / 2 \%$ increase in $A(R \propto L / A)$ fractional change in $\rho \mathrm{K}^{-1} \approx$ strain OR fractional change L in the gauge so this effect could be important OR fractional change in $\rho \mathrm{K}^{-1} \gg$ fractional change $L \mathrm{~K}^{-1}$ so expansion is a less important temperature than change in ρ	L L S\&C S\&C	not just T affects ρ and R accept $\%$ increase in A is $2 \times \%$ increase in $L(R \propto L / A)$ accept $\%$ expansion $\mathrm{K}^{-1} \approx 1 / 100 \%$ increase $\rho \mathrm{K}^{-1}$ so could be ignored to first approximation
38	(b)	(iii)	Fig. $37.4 \propto$ line added of $2 \times$ gradient of original $\quad \checkmark$	M	expect line through $\{0,3.000\}$ and $\{0.2,3.012\}$, gradient $=$ 0.0060
			Total	9	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Answer \& Marks \& Guidance \\
\hline 39 \& (a) \& (i) \& \(1024 \times 1224 \times 3 \times 10=37.6\) Mbits \& L \& accept 38 Mbits \\
\hline 39 \& (a) \& (ii) \& \[
R_{\text {EARTH }} \equiv(45 \mathrm{~mm} / 53 \mathrm{~mm}) \times 1024=870 \text { pixels }
\]
\[
6.4 \times 10^{6} \mathrm{~m} / 870 \text { pixels }=7.4 \times 10^{3}\left(\mathrm{~m} \text { pixel }{ }^{-1}\right)
\] \& L
M \& \begin{tabular}{l}
Teachers should check measurements from their printed papers. This solution is based on earth radius of 45 mm and image width 53 mm . \\
evaluation accept in range \(\{7.2\) to 7.6\(\} \times 10^{3}\left(\mathrm{~m}\right.\) pixel \(\left.{ }^{-1}\right)\)
\end{tabular} \\
\hline 39 \& (b) \& \& \begin{tabular}{l}
Level 3 (5-6 marks) \\
Clear description of the three strands: \\
- noise reduction \\
- changing contrast or brightness \\
- edge detection \\
AND \\
Gives advantages and problems of image processing and explains why compressing the image is useful \\
There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. \\
Level 2 (3-4 marks) \\
Describes at least two of the three strands above OR covers all three at a superficial manner. \\
AND \\
Gives an advantage OR problem of image processing OR explains why compressing the image is useful There is a line of reasoning presented with some structure. The information presented is in the mostpart relevant and supported by some evidence. \\
Level 1 (1-2 marks) \\
Makes at least two independent points that are relevant The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be
\end{tabular} \& S\&C
H

M

M \& | Indicative scientific points may include: |
| :--- |
| Noise reduction: |
| - smoothing, by replacing the pixel value with the median of the values of that pixel and its 8 neighbours |
| - the median value of the nine is the middle one(s) when placed in rank order |
| - filtered image is built up in new array so that original pixel values are always used for rank filter |
| Edge detection: |
| - enhance edges by subtracting average value of pixels neighbour's from each pixel. |
| - Removes uniform areas of brightness and highlights places where gradient of brightness changes abruptly. |
| Changing contrast or brightness: |
| Example (with 10 bits, could be 8 bits) |
| - 10 bits means $2^{10}=1024$ levels of brightness |
| - increase brightness by increasing the value on each |

\hline
\end{tabular}

Question			Answer	Marks	Guidance
			clear. 0 marks No response or no response worthy of credit	L L	pixel by the same amount until brightest pixel in image coded 1024 - whole range of levels may not be used so increase contrast by stretching to cover full 0 to 1024 range - \{value-lowest $\times 1024$ / \{highest - lowest\} Advantages and problems of image processing and why compressing image is useful - minimizing the size in bytes of an image file without degrading the quality of the image to an unacceptable level. - large areas of one pixel value / colour coded by colour value followed by number of consecutive pixels in the row with that colour - noise or spurious artefacts can be introduced to image OR real artefacts removed - reduces the time / bandwidth required for image transmission - reduction in file size allows more images to be stored in a given amount of disk or memory space. accept clearly labelled diagrams throughout
39	(c)		$\begin{aligned} & \text { (info }=\text { rate } \times \text { time })=340 \text { bit s }^{-1} \times 24 \times 3600 \mathrm{~s} / 8 \\ & =3.7 \text { (Mbytes }) \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	method evaluation
			Total	11	

40	(a)		Lorentz force / Bqv supplies centripetal force \checkmark $B q v=m v^{2} / r \quad \rightarrow \quad B q=m v / r \quad \rightarrow \quad r=m v / B q$	L M	accept Bqv force remains perpendicular to v and pulls path into a circle keeping speed constant, acceleration causing only a change in direction
40	(b)	(i)	$T=\pi r / v=\pi m v / B q v=\pi m / B q$ (independent of v) \checkmark	M	
40	(b)	(ii)	(faster protons go further but time to traverse dee remains constant so) accelerating frequency can remain constant \checkmark	H	
40	(b)	(iii)	$f=0.8 \times 1.6 \times 10^{-19} /\left\{2 \pi \times 1.673 \times 10^{-27}\right\}=12 \mathrm{M}(\mathrm{Hz})$	L	accept 12.17 MHz OR $1.217 \times 10^{7} \mathrm{~Hz}$
40	(b)	(iv)	2 crossings per spiral loop OR 10 k eV per loop number of loops $=1.2 \mathrm{MeV} / 10 \mathrm{keV}=120$	H H	evaluation Award 1 mark for correct method and evaluation using 5 keV
40	(b)	(v)	$\begin{aligned} \gamma & =E_{\text {TOTAL }} / E_{\text {REST }}=\{940+1.2\} \mathrm{MeV} / 940 \mathrm{MeV} \\ & =1.001(3) \approx 1 \text { so non-relativistic approach reasonable } \end{aligned}$	M M	method evaluation and conclusion accept is a small deviation from 1
			Total	9	

Question		Answer	Marks	Guidance	
$\mathbf{4 1}$	(a)	(i)	$k T=1.4 \times 10^{-23} \times 10^{11} /\left\{1.6 \times 10^{-19}\right\}(\mathrm{eV})$ $=8.75 \times 10^{6} \mathrm{eV}(\approx 9 \mathrm{MeV})$	\mathbf{L}	method and show that evaluation to 8.75 or 8.8 MeV accept 8.63 MeV using $k=1.38 \times 10^{-23}$
$\mathbf{4 1}$	(a)	(ii)	rest energy of electron or positron $\approx 9.11 \times 10^{-31} \times(3 \times$ $\left.10^{8}\right)^{2} /\left(1.6 \times 10^{-13}\right)$ $\ll 9 \mathrm{MeV}$	0.512 MeV OR pair $=1.02 \mathrm{MeV} \checkmark$	
\mathbf{H}					

Question			Answer	Marks	Guidance
41	(a)	(iii)	but for proton or antiproton is $\approx 1000 \mathrm{MeV} \gg 9 \mathrm{MeV}$ for a substantial proportion of photons to have sufficient energy the temperature needs to be higher / about x10 to x100 higher	H	
41	(b)	(i)	$\begin{aligned} \text { mass created } & =m_{\text {NEUTRON }}-m_{\text {PROTON }}+m_{\text {ELECTRON }} \text { OR } \\ & =\{1.008665-1.007276+0.000549\} \mathrm{u} \\ & =0.001938 \mathrm{u}=1.810 \mathrm{MeV} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	accept mass / energy of neutrino may be zero / negligible as standalone alternative for first mark
41	(b)	(ii)	As T falls $e^{-\frac{E}{k T}}$ gets smaller, the number of p with enough energy to become n reduces. so ratio of p to n increases. fraction of particles with activation energy to create $\begin{aligned} & \text { neutrons }=\text { Boltzmann factor }=e^{-\frac{E}{k T}}=e^{-\frac{1.8}{8.8}} \\ & e^{-0.209}=0.812 \quad(p: n=1 / 0.812) \end{aligned}$	$\begin{aligned} & S \& C \\ & S \& C \end{aligned}$	method evaluation
41	(c)	(i)	$\begin{aligned} & \text { mass released as binding energy } \\ & =m_{\text {DEUTERON }}-\left\{m_{\text {PROTON }}+m_{\text {NEUTRON }\}}=0.002388 \mathrm{u}\right. \\ & =0.002388 \times 931.1 \mathrm{MeV} / \mathrm{u}=2.2(2) \mathrm{MeV} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	Evaluation accept calculation of mass and use of $E=m c^{2}$ and conversion to MeV gives 2.23 MeV
41	(c)	(ii)	thermal energy of particles / photons will be $\approx 0.9 \mathrm{MeV}$ but in the Boltzmann / Planck distribution tail there will be particles with 2.2 MeV energy to break deuterons apart	S\&C	accept alternative words or estimated calculations e.g. fraction with activation energy $\approx e^{-\frac{2.2}{0.88}}=0.082$
			Total	12	
			Total section C Total sections B \& C	$\begin{aligned} & 54 \\ & 80 \end{aligned}$	

