Oxford Cambridge and RSA

A Level Physics B (Advancing Physics)
H557/02 Scientific literacy in physics

PRACTICE 2 MARK SCHEME

MAXIMUM MARK 100
\square
FINAL

MARKING INSTRUCTIONS

PREPARATION FOR MARKING

SCORIS

1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: scoris assessor Online Training; OCR Essential Guide to Marking.
2. Make sure that you have read and understood the mark scheme and the question paper for this unit. These are posted on the RM Cambridge Assessment Support Portal http://www.rm.com/support/ca
3. Log-in to scoris and mark the required number of practice responses ("scripts") and the required number of standardisation responses.

YOU MUST MARK 10 PRACTICE AND 10 STANDARDISATION RESPONSES BEFORE YOU CAN BE APPROVED TO MARK LIVE SCRIPTS.

MARKING

1. Mark strictly to the mark scheme.
2. Marks awarded must relate directly to the marking criteria.
3. The schedule of dates is very important. It is essential that you meet the scoris 50% and 100% (traditional 50\% Batch 1 and 100% Batch 2) deadlines. If you experience problems, you must contact your Team Leader (Supervisor) without delay.
4. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone, email or via the scoris messaging system.
5. Work crossed out:
a. where a candidate crosses out an answer and provides an alternative response, the crossed out response is not marked and gains no marks
b. if a candidate crosses out an answer to a whole question and makes no second attempt, and if the inclusion of the answer does not cause a rubric infringement, the assessor should attempt to mark the crossed out answer and award marks appropriately.
6. Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the candidate has continued an answer there then add a tick to confirm that the work has been seen.
7. There is a NR (No Response) option. Award NR (No Response)

- if there is nothing written at all in the answer space
- OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
- OR if there is a mark (e.g. a dash, a question mark) which isn't an attempt at the question.

Note: Award 0 marks - for an attempt that earns no credit (including copying out the question).
8. The scoris comments box is used by your Team Leader to explain the marking of the practice responses. Please refer to these comments when checking your practice responses. Do not use the comments box for any other reason.

If you have any questions or comments for your Team Leader, use the phone, the scoris messaging system, or e-mail.
9. Assistant Examiners will send a brief report on the performance of candidates to their Team Leader (Supervisor) via email by the end of the marking period. The report should contain notes on particular strengths displayed as well as common errors or weaknesses. Constructive criticism of the question paper/mark scheme is also appreciated.
10. For answers marked by levels of response:

- Read through the whole answer from start to finish.
- Decide the level that best fits the answer - match the quality of the answer to the closest level descriptor.
- To select a mark within the level, consider the following:

Higher mark: A good match to main point, including communication statement (in italics), award the higher mark in the level Lower mark: Some aspects of level matches but key omissions in main point or communication statement (in italics), award lower mark in the level.

Level of response questions on this paper are 5a and 10.
11. Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Unds which are not essential to gain credit
E-	Alternarive carried forward
AW	Or reverse argument
ORA	

12. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Question			Answer	Marks	Guidance
2	(a)	1	If there were more colours in the orange light, more colours would be observed in the diffracted image. AW \checkmark	1	Allow the red and green combine to create the orange light
		ii	Both red light and green light are in phase at central maximum AW \checkmark	1	Accept other correct suggestions, e.g. each $1^{\text {st }}$ order maximum has only one of the two wavelengths, or the intensity at this point is lower as it is convoluted with the single-slit diffraction envelope
	(b)	i	$\begin{aligned} & \text { wavelength }=h c / E \\ & =6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s} \times 3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} /\left(1.6 \times 10^{-19} \mathrm{~J} \times 1.9\right) \\ & =6.5 \times 10^{-7} \mathrm{~m} \checkmark \\ & \sin \theta=6.5 \times 10^{-7} \mathrm{~m} \times 300 \times 10^{3} \mathrm{~m}^{-1}=0.195 \checkmark \\ & \theta=11^{\circ} \checkmark \end{aligned}$	3	no s.f. penalty Accept bald correct answer for 3 marks
		ii	By ratio, angle to $1^{\text {st }}$ order for green $=9^{\circ} \checkmark$ wavelength $=\sin 9^{\circ} / 300 \times 10^{3} \mathrm{~m}^{-1}=5.2 \times 10^{-7} \mathrm{~m} \checkmark$	2	Accept answers in range $5.1-5.3 \times 10^{-7} \mathrm{~m}$ Accept bald correct answer for 2 marks
	(c)		$n=d \sin \theta / \lambda, \sin \theta \leq 1 \checkmark$ therefore, number of orders possible $=d / \lambda \checkmark$ $\lambda_{\text {green }}$ is smaller than $\lambda_{\text {red }}$ so d / λ gives larger ratio AW \checkmark	3	Allow argument by calculation. Each step must be clear Allow attempted calc. of θ for $n=5$ and 6 for each wavelength for full marks if correct conclusion drawn
			Total	10	

Question			Answer	Marks	Guidance
3	(a)	i	Young modulus is the gradient of the linear portion of graph \checkmark Gradient $=\left(1.0 \times 10^{9} \mathrm{~Pa}-0\right) /(0.005-0.000) \checkmark$ $=2 \times 10^{11} \mathrm{~Pa}(200 \mathrm{GPa}) \checkmark$	3	Other ranges acceptable Accept values between 1.9×10^{11} and $2.2 \times 10^{11} \mathrm{~Pa}$
		ii	Alloy stiffer shown by steeper gradient \checkmark Alloy stronger shown by higher stress at breaking \checkmark Pure metal more ductile with wider plastic region \checkmark	3	
	(b)		Any four from: - Pure metal has regular planes which can slip over one another - by mobile dislocations - producing plastic flow - Alloy has atoms of different metals within the microstructure - These 'pin' dislocations AW - reducing plastic behaviour/increasing strength	4	Accept 'foreign atoms'
			Total .	10	

Question		Answer	Marks	Guidance
5	(a)	Level 3 (5-6 marks) Marshals argument in a clear manner, proceeding from correctly calculating acceleration of ball to an explanation that this is lower than expected acceleration $=g \sin \theta$. Considers possible reason for discrepancy in expected and recorded times its consequent effect. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Correctly calculates acceleration of the ball and makes considered statements about discrepancies in expected and recorded times. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Either correctly calculates acceleration of the ball OR makes valid suggestion as to why the recorded time was more than the expected time but does not provide any supporting reasoning. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit	6	Indicative scientific points may include: - Acceleration of ball stated as $2 \mathrm{~s} / \mathrm{t}^{2}$ (or numerically) - Acceleration calculated as $1.98 \mathrm{~m} \mathrm{~s}^{-2}$ - Statement that student might expect $a=g \sin \theta$ - $a=g \sin \theta=9.81 \times \sin 20=3.35 \mathrm{~m} \mathrm{~s}^{-2}$ - Expected acceleration using 0.85 s calculated at $3.35 \mathrm{~m} \mathrm{~s}^{-2}$ - Suggested acceleration leading to a journey time of $(2.4 / 3.35)^{0.5}$ - Suggested journey time calculated at 0.846 s ~ 0.85 s - Some p.e. transferred to rotational k.e. or work done against friction - Clear reasoning to explain lower acceleration for example: energy transfer from ball will give lower k.e and thus lower velocity at the bottom of the ramp so the journey time will be longer than expected. (AW)

Question			Answer	Marks	Guidance
5	(b)		Any five points from: - Change in p.e. the same in both cases - Therefore, final k.e. the same - Therefore, final velocity the same - Initial acceleration greater for the second slope - greater average velocity - therefore, time to reach the end of the slope will be less. - Assuming that the effects of energy loss/friction are the same for both tracks	5	
	(c)	i	$\begin{aligned} & T=5.61 \mathrm{~s} / 3=1.87 \mathrm{~s} \& L=0.85 \mathrm{~m} \\ & T=2 \pi \sqrt{ }(L / g) \Rightarrow g=4 \pi^{2} L / T^{2} \\ & =9.596 \mathrm{~m} \mathrm{~s}^{-2}=9.6 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	2	First mark is for correct T and L and rearrangement of equation Second mark is for evaluation and rounding to 2 s.f.
		ii	$\begin{aligned} & \text { suggestion } \checkmark \\ & \text { explanation } \checkmark \end{aligned}$	2	e.g. time more oscillations \checkmark because \%age error in timing is reduced by division \checkmark e.g. repeat measurement (for $L=85 \mathrm{~cm}$) several times and average \checkmark because if reduces random error \checkmark e.g. repeat for different values of L and plot graph of T^{2} against L to find gradient (and hence g) \checkmark because graphing counteracts random error \checkmark
			total	15	

Question			Answer	Marks	Guidance
6	(a)		$\begin{aligned} & \text { acceleration }=\frac{(2 \pi r / T)^{2}}{r} \checkmark \\ & =5.8 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-2} \checkmark \end{aligned}$	2	Correct bald answer gains both marks
	(b)	i	$\begin{aligned} & \frac{v^{2}}{r}=\frac{G M}{r^{2}} \\ & v^{2} r=G M \\ & \frac{4 \pi^{2} r^{3}}{T^{2}}=G M \checkmark \\ & \frac{r^{3}}{T^{2}}=\frac{G M}{4 \pi^{2}} \checkmark \end{aligned}$ statement that G, M, π^{2} are all constants so $\frac{r^{3}}{T^{2}}$ is a constant \checkmark	4	Any clear, complete, derivation gains first three marks
	(b)	ii	$\frac{\left(1.5 \times 10^{11}\right)^{3}}{1^{2}}=\frac{\left(2.28 \times 10^{11}\right)^{3}}{T^{2}} \checkmark$ Calculated result: orbital period of Mars $=1.87$ years \checkmark	2	Correct bald answer gains both marks
	(c)	i	$\begin{aligned} & \Delta V_{g}=-G M m\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \checkmark \\ & =-6.7 \times 10^{-11} \times 6.4 \times 10^{23} \times 2 \times 10^{30}\left(\frac{1}{2.5 \times 10^{11}}-\frac{1}{2.1 \times 10^{11}}\right) \checkmark \\ & =6.5(3) \times 10^{31} \mathrm{~J} \checkmark \end{aligned}$	3	Correct bald answer gains three marks Other methods acceptable. One mark for calculating p.e. at greatest distance (aphelion) $=-2.3 \times 10^{32} \mathrm{~J}$ One mark for calculating p.e. at smallest distance $($ perihelion $)=-2.98 \times 10^{32} \mathrm{~J}$
		ii	$\begin{aligned} & \text { k.e. of Mars at aphelion }=2.3 \times 10^{32} \mathrm{~J} \checkmark \\ & \text { k.e. at perihelion }=2.3 \times 10^{32}+6.5 \times 10^{31}=2.95 \times 10^{32} \mathrm{~J} \checkmark \\ & \text { velocity at perihelion }=3.1 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1} \checkmark \end{aligned}$	3	Ecf from c (i) if answer to c(i) rounds to $7 \times$ 10^{31} If 7×10^{31} used, $\mathrm{v}=3.1 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}\left(3.06 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}\right)$
			total	14	

Section C					
Question			Answer	Marks	Guidance
7	(a)		$\begin{aligned} & \text { Decay constant }=4.1 \times 10^{-9} \mathrm{~s}^{-1} \checkmark \\ & \text { Number of nuclei present }=1 \times 10^{22} \checkmark \\ & \text { Activity } 1 \times 10^{22} \times 4.1 \times 10^{-9}=4.1 \times 10^{-13}(\mathrm{~Bq}) \end{aligned}$	3	Alternative methods possible, must show working and own answer.
-	(b)		Total energy of gamma rays $=1.17+1.33 \mathrm{MeV} \checkmark$ power $=2.50 \times 10^{6} \times 1.6 \times 10^{-19} \times 4.1 \times 10^{13}=16(\mathrm{~W}) \checkmark$	2	
			total	5	
8	a		$\begin{aligned} & \text { maximum work function }=6.6 \times 10^{-34} \times 3 \times 10^{8} / 4.2 \times 10^{-7} \checkmark \\ & =4.7 \times 10^{-19}(\mathrm{~J}) \checkmark \end{aligned}$	2	correct bald answer gains both marks
	b	i	$\begin{aligned} & v=\left(100 \times 1.6 \times 10^{-19} \times 2 / 9.1 \times 10^{-31}\right)^{1 / 2} \\ & =5.9 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1} \checkmark \end{aligned}$	2	correct bald answer gains both marks
		ii	```Gamma factor = (5.1 \ 105 +1 \102)/5.1 \ 105\checkmark =1.0002 which is almost unity, so relativistic effects can be ignored.```	2	'gamma factor will be roughly one so relativistic effects can be ignored' gains one mark
			total	6	
9	a		$\begin{aligned} & I / I_{0}=0.5=\mathrm{e}^{-0.25 \mu} \checkmark \\ & \text { In } 0.5=-2.5 \mu \\ & \mu=0.28 \mathrm{~cm}^{-1} \checkmark \end{aligned}$	2	Must show working and own answer
	b		Reduction in count rate due to inverse square law: Count rate $=900 \times 10^{2} / 40^{2}$ $=56(.25) \checkmark$ Reduction due to absorber: Count rate $=56.25 \mathrm{e}^{-0.28 \times 0.5} \checkmark$ $=49 \mathrm{~Bq} \checkmark$	4	
	C		Fraction of gamma rays absorbed per cm in material \checkmark If the intensity of gamma rays is high enough the fraction absorbed will represent many photons and provide a therapeutic dose \checkmark	2	AW throughout.
			total	8	

