

Practice

A GCE Physics B H557/01

Paper 1 Fundamentals of Physics

MARK SCHEME

Duration: 2 hours 15 minutes

MAXIMUM MARK 110

This document consists of 15 pages

Section A: MCQs

Q	uestion	Answer	Marks	Guidance
1		В	1	
2		D	1	
3		С	1	
4		A	1	
5		D	1	
6		В	1	
7		D	1	
8		D	1	
9		Α	1	
10		C	1	
11		В	1	
12		С	1	
13		D	1	
14		A	1	
15		С	1	
16		В	1	
17		С	1	
18		D	1	
19		A	1	
20		С	1	
21		C	1	
22		D	1	
23		С	1	
24		В	1	
25 26 27		A	1	
26		В	1	
27		В	1	
28		В	1	
29		С	1	
30		D	1	
		Total	30	

Section B

Q	uesti	on	Answer	Marks	Guidance
31	(a)		$r_{\text{internal}} = \{ \varepsilon - V \} / I \text{ or e.g.} = \{ 0.8 - 0.4 \} / 0.25 \times 10^{-3} \checkmark$	1	method read from graph intercept and another point
			= 1600 (Ω) ✓	1	evaluation
31	(b)	(i)	proportional graph through e.g. (0.10 mA, 1.0 V) ✓	1	
	(b)	(ii)	current = intercept = 0.07 (mA) ✓	1	read from graph
			R is across cell so shares same p.d. and current ✓	1	explanation accept by calculation = 0.80 / 11600 = 0.069 (mA)
			Total	5	

Q	Question		Answer	Marks	Guidance
32	(a)		contrast stretch / improvement / ✓	1	
			the raw image only uses a limited range of 140/1 pixel values, these are shifted and stretched to use all 255/6 levels of the greyscale	1	
32	(b)		(255) / (140)	1	accept (255) / (175 - 35)
			Total	3	

Q	Question		Answer		Marks	Guidance
33	(a)		polarisation	✓	1	accept oscillations at 90° to direction of propagation if stated that aerial points <u>at</u> transmitter (when rotated)
33	(b)		(signal) increases / returns to original intensity receiving aerial is parallel to direction of oscillation agai / aerial is back in plane of polarisation	✓ in ✓	1	AW accept E or B vector
			Total		3	

Question		Answer	Marks	Guidance
(a)	energy = area under $Q \propto V$ graph is Δ area $\frac{1}{2} Q V \checkmark$	1	accept not all Q can be taken at the max p.d. as V falls as ΔQ is removed $\frac{1}{2}V$ s average p.d.
		or $\Delta E = Q \Delta V$ and $E = \Sigma Q \Delta V = \frac{1}{2} Q V$		or $E = Q \times V_{\text{mean}} = \frac{1}{2} Q V$
(b)	$V = \sqrt{(2 \times E) / C}$ or $\sqrt{(2 \times 200) / 500 \times 10^{-6}}$	_1	method in rearranged algebra or numbers
		= 890 (V)	1	evaluation accept 894 (V)
		Total	3	
	(a	(a)	energy = area under $Q \propto V$ graph is Δ area $\frac{1}{2} Q V$ or $\Delta E = Q \Delta V$ and $E = \sum Q \Delta V = \frac{1}{2} Q V$ (b) $V = \sqrt{(2 \times E) / C}$ or $\sqrt{(2 \times 200) / 500 \times 10^{-6}}$ = 890 (V)	energy = area under $Q \propto V$ graph is Δ area $\frac{1}{2} Q V$ or $\Delta E = Q \Delta V$ and $E = \sum Q \Delta V = \frac{1}{2} Q V$ (b) $V = \sqrt{(2 \times E) / C}$ or $\sqrt{(2 \times 200) / 500 \times 10^{-6}}$ 1 = 890 (V)

Q	uestic	on	Answer	Marks	Guidance
35	(a)		$\theta = \sin^{-1}(2/6)$ = 19 ⁰	1	method accept correctly labelled vector Δ evaluation accept 19.4(7) ° or 19.5 ° not 20 ° RE (rounding error)
35	(b)		= $6 \times \cos(19.5^{\circ}) = 5.7 \text{ (m s}^{-1})$ or = $\sqrt{(6^2 - 2^2)} = 5.7 \text{ (m s}^{-1})$	1	evaluation accept by components or Pythagoras allow ecf on $\cos\theta$ from (a) accept if scaled vector Δ answers in range 5.5 to 5.9 (m s ⁻¹)
			Total	3	

Q	uesti	on	Answer	Marks	Guidance
36	(a)		4 light- μ s = 4 x 10 ⁻⁶ x 3 x 10 ⁸ = 1200 (m)	1	
36	(b)	(i)	e-m radiation pulses travel 1 light-μs in 1 μs (so 45° Δ) ✓	1	
36	(b)	(ii)	e.g. $\tan \theta = 4 \text{ light-}\mu\text{s} / 6 \mu\text{s}$ = $4 \text{ c} / 6 = \frac{2}{3} \text{ c} = 2.0 \text{ x} 10^8 \text{ (m s}^{-1})$	1	accept ² / ₃ c for the mark
36	(c)		all pulses out and return at 45° angles on each figure ✓ ✓	2	accept judged by eye time 1/ pa 12 pulse back 13 13 14
			Total Total section B	6 23	

Section C

Q	uesti	on	Answer	Marks	Guidance
37	(a)	(i)	$\Delta v = g \Delta t$ this only recognises gravitational acceleration there is no term involving the force of drag and the acceleration it would produce	1	accept the only acceleration is due to gravity
37	(a)	(ii)	iterative model assumes v_y remains constant during Δt instead of continuously changing, so y values are always bigger than reality	1	not just v_y or y overshoots
37	(a)	(iii)	by making Δt smaller and doing more iterations per time interval we can make the process as \checkmark	1	
37	(a)	(iv)	v_x really is constant (ignoring air resistance) so no \approx or approximation is involved	1	accept there is no horizontal acceleration / force acting
37	(b)		y/m analytic 1 0.8 1 0.75	2	one mark for each correct column
37	(c)	(i)	y/m 0.75 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25	2	one mark for each correct graph with points allow small plotting errors or small calculation errors ecf (b)

Q	uesti	on	Answer	Marks	Guidance
37	(c)	(ii)	general shape is parabolic / both have same x values at same times ✓ iteration reaches higher y -value / peaks later in time / analytical reaches larger downward velocity ✓	1	similarity accept any sensible answer not start at same angle of projection difference accept any sensible answer not iteration reaches further
37	(d)		not every problem has an analytical solution / but many can be modelled by iteration and predictions can be made / approximations or models can be improved in the light of more real world data	1	accept any two sensible points
			Total	12	

Q	uesti	on	Answer	Marks	Guidance
38	(a)	(i)	(wave) superposition ✓ (when waves from two or more sources overlap), the resultant displacement (at a given instant and position) is equal to the sum of the individual displacements ✓	1	accept (wave) interference accept when a wave crest/trough meets another wave crest/trough a large crest/trough forms called constructive interference and If a wave crest meets a wave trough, the waves cancel each other out momentarily called destructive interference. accept labelled diagrams
38	(a)	(ii)	diffraction by single slit with ripple tank / light / µ-waves can show circular / sideways spreading of wave energy ✓	1	accept spreading of waves through a slit occurs at any point along an interrupted wavefront as if circular spreading was occurring from all points on the wavefront
38	(a)	(iii)	wavelets spread on circular arcs of fixed radius = c Δt	1	
38	(b)	(i)	wavefronts of wavelets line up along BB ' with waves from successive slits being delayed by one cycle / one λ	1	not just wavelets line up
38	(b)	(ii)	Level 3 (5–6 marks)	6	Indicative scientific points may include:
			Marshals argument in a clear manner and includes clear explanation of three strands: using grating equation for spectral orders explain grating using wave ideas explain grating using phasor ideas There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.		 Grating equation for spectral orders recognising that n = 1 is first order at θ₁ or that n = 2 is second order at θ₂ use of sinθ = n λ / d with n = 1 ⇒ θ₁ = 23.6° or use of sinθ = n λ / d with n = 2 ⇒ θ₂ = 53.1° ORA Explain grating using wave ideas path difference between consecutive slits = d sinθ if path difference is an integer number of λs then waves at angle θ are in phase and will constructively interfere to give a high intensity at that angle or if path difference is an odd number of ½ λs then waves at angle θ are in antiphase and will destructively interfere to give a zero intensity at that

Question	Answer	Marks	Guidance
	Level 2 (3–4 marks) Shows clear understanding of at least two of the three strands above to the argument or covers all three at a superficial manner and does not include enough indicative points for level 3. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) Makes at least two independent points that are relevant to the argument but does not link them together and shows only superficial engagement with the argument. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. O marks No response or no response worthy of credit		 Explain grating using phasor ideas photons are emitted and detected discretely description of phasor arrow rotating at f to describe every possible path and find phasor angle for each add phasor arrows tip to tail to get phasor resultant for all possible paths between emission and detection phasors near straight line paths "line up" and contribute most to resultant amplitude and probability away from the straight line path phasors "curl up" and contribute little to resultant amplitude and probability probability of photon arrival at this detection point (resultant phasor amplitude)² repeat for all possible detection points sum probabilities and normalise so that total probability is 1 i.e. photon arrives somewhere accept well labelled diagrams throughout for credit if integrated into the explanation
	Total	11	

Q	uesti	on	Answer	Marks	Guidance
39	(a)	(i)	1.89 or 1.9 3.70 or 3.7 5.38 or 5.4 6.67 or 6.7	1 1 1	G/mS values in table allow 2 or 3 S.F. G values plotted correctly allow ecf on wrong values best fit line must show proportionality for mark
39	(a)	(ii)	R vs Intensity both variables change over about 2 orders of magnitude / by about x 100 / graph is highly curved \checkmark both graphs give linear best fit graph / test a functional relationship \checkmark straight log / log graph shows a power law $R \propto I^n$ (gradient = n \approx -1)	1 1	accept log / log graphs compress large ranges of data accept straight line graphs are only function that can be judged by eye accept $R \propto 1/I^n$ (n ≈ 1) or $G \propto I$
39	(a)	(iii)	photons give energy to electrons and free them into the conduction band \checkmark $G \propto \text{carrier density} \text{and} G \propto I \text{so expect}$ $I \propto \text{carrier density} \text{(provided electrons drop back into bonds / recombine with holes)}$	1	reason evaluation
39	(b)	(i)	threshold λ above which process of freeing electrons does not occur or \checkmark threshold f or E below which electrons are not freed from bonds	1	
39	(b)	(ii)	$E = hc / \lambda = 6.6 \times 10^{-34} \times 3 \times 10^{8} / 770 \times 10^{-9}$ $= 2.6 \times 10^{-19} \text{ (J)}$	1	must have threshold λ not peak λ

Q	Question		Answer		Marks	Guidance
39	(c)		$V = 6 \times R / (R + R_{LDR})$ or $6 \times 470 / (470 + 270)$ = 3.8 (V)	✓ ✓	1	method evaluation
				Total	14	

Q	Question		Answer	Marks	Guidance
40	(a)	(i)	gravitational force is always attractive so potential energy per kg increases as body is lifted above the Earth's surface, towards zero at ∞ by convention ✓	1	accept arbitrary zero of potential is at ∞ separation, so as bodies approach, potential energy decreases below zero hence negative
40	(a)	(ii)	to launch $\frac{1}{2} v^2 = 62 \times 10^6 \text{ J kg}^{-1}$ or $v = \sqrt{(124 \times 10^6)}$ \checkmark $v = 1.1(1) \times 10^4 \text{ (m s}^{-1})$	1	method accept energy per kg or for mass <i>m</i> which cancels in words / algebra / numbers evaluation
40	(b)	(i)	(k.e. lost = p.e. gained) \Rightarrow \checkmark $1/2 m v^2 = GMm/r \Rightarrow v = \sqrt{(2GM/r)}$ where M is mass of spherical body of radius r that you are trying to escape and G is the gravitational constant \checkmark	1 1	
40	(b)	(ii)	$v = \sqrt{(2G\{^4/_3 \pi R^3 \rho\}/R} \Rightarrow v = \sqrt{(^8/_3 G \pi \rho) R}$	1	algebraic reasoning accept $M = {}^4/_3 \pi R^3 \rho$
40	(b)	(iii)	$R = \sqrt{(3/8G\pi\rho)} c$ $= \sqrt{(3/(8 \times 6.7 \times 10^{-11}) \times \pi \times 10^{17})} \times 3 \times 10^{8}$ $= 4.0 \times 10^{4} \text{ (m)}$	1	method change subject of equation and sub for c in algebra / numbers evaluation
			Total	9	

Question	Answer	Marks	Guidance	
41 (a)	Level 3 (5–6 marks)	6	Indicative scientific points may include:	
	Marshals argument in a clear manner and includes clear explanation of three strands: • change in mass • binding energy equivalent • forces and momentum There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Shows clear understanding of at least two of the three strands above to the argument or covers all three at a superficial manner and does not include enough indicative points for level 3. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) Makes at least two independent points that are relevant to the argument but does not link them together and shows only superficial engagement with the argument. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear.		 Change in mass protons and neutrons in a nucleus are bound by the strong nuclear force, which is a short-range attractive force sufficient to overcome the electrostatic repulsion between the protons in a nucleus. For a nucleus with Z protons and N neutrons Δm = mass of nucleus - (Z mp + N mn) OR change in mass = 221.9703 - (217.9628 + 4.0015) = 0.0060 (u) Binding energy equivalent to pull nuclei apart requires energy called the binding energy of the nucleus binding energy of a nucleus can be calculated from the difference in mass between the nucleus and its separate neutrons and protons binding energy = Δm c² rest energy of the nucleus is less than that of its constituent particles. Since the rest energy E_{rest} = m c², the mass of the nucleus is also less than that of its constituent particles. ΔE = Δm c² = 0.0060 x 1.661 x 10⁻²⁷ x (3.00 x 10⁸)² = 8.969 x 10⁻¹³ (J) = 8.969 x 10⁻¹³ (J) = 8.969 x 10⁻¹³ / (1.6 x 10⁻¹⁹ x 10⁶) = 5.61 (MeV) OR accept knowledge of 1 u = 931 MeV 	

Q	Question		Answer	Marks	Guidance
			O marks No response or no response worthy of credit		 during emission α and remnant nucleus repel with equal and opposite electrostatic forces (for equal times) or F = k Q₁ Q₂ / r² by Newton's 3rd Law nucleus recoils so impulses are equal and opposite on α and nucleus so gaining equal and opposite momenta nucleus carries away some k.e. from binding energy released accept well labelled diagrams throughout for credit if integrated into the explanation
41	(b)	(i)	conservation of momentum	1	accept momentum before = momentum after = zero or equal magnitude opposite direction for two particles momenta
41	(b)	(ii)	$= m_{Po} v_{Po}^{2} / m_{\alpha} v_{\alpha}^{2} = m_{Po} m_{\alpha}^{2} / m_{\alpha} m_{Po}^{2} = m_{\alpha} / m_{Po}$	1	mid step must be clear for mark
41	(b)	(iii)	= 0.98(2) 5.61 MeV x 0.982 = 5.5(1) MeV value of α k.e. 5.5 MeV agrees at 2 S.F. level \checkmark	1 1	accept evaluation of energy or fractional energy allow nuclear fraction of total k.e. = 0.018 or nuclear recoil k.e. = 0.10(1) MeV comparison of energy to actual value
			Total Total section C Total sections B & C	11 57 80	