Practice 1: P1
A Level Physics B (Advancing Physics)
H557/03 Practical skills in physics

MARK SCHEME

Duration: 1 hour 30 minutes

MAXIMUM MARK
 60

Final

MARKING INSTRUCTIONS

Generic version as supplied by OCR Sciences

Note about significant figures:
If the data given in a question is to 2 sf, then allow to 2 or more significant figures.
If an answer is given to fewer than 2 sf , then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Additional Guidance.

SECTION A

Question			Answer	Marks	Guidance
1	a	(i)	Uncertainty = half scale division normally $1 \mathrm{~mm} \checkmark$	1	
		(ii)	$\mathrm{V}=7.6^{3}=4.39 \times 10^{2} \mathrm{~cm}^{3} \checkmark$	1	
		(iii)	$\begin{aligned} & \text { \% uncertainty in length }=(0.05 / 7.60) \times 100 \\ & =6.58 \times 10^{-1} \% \checkmark \\ & \% \text { uncertainty in volume }=3 \times 6.58 \times 10^{-1}=1.97 \% \checkmark \end{aligned}$	2	$\begin{aligned} & \text { OR calculate } V_{\max }=4.48 \times 10^{2} \mathrm{~cm}^{3} \\ & \text { \% uncertainty in } V=\left(\left((4.48-4.39) \times 10^{2}\right) / 4.39 \times 10^{2}\right) \times 100 \\ & =2.05 \% \end{aligned}$
	(b)	(i)	Volume of paper remains constant / V = At	1	
		(ii)	$\begin{aligned} & \mathrm{t}=4.39 \times 10^{2} / 152^{2}=1.9 \times 10^{-2} \mathrm{~cm} \checkmark \\ & \% \text { uncertainty in side length }=(0.05 / 152) \times 100 \\ & =3.29 \times 10^{-2} \% \checkmark \\ & \% \text { uncertainty in } \mathrm{t}=1.97+2\left(3.29 \times 10^{-2}\right)=2.04 \% \end{aligned}$	3	OR calculate $\mathrm{t}_{\max }$ etc.
		(iii)	Measure total thickness of 400 sheets and divide total thickness by $400 \checkmark$	1	
	(c)	(i)	$\begin{aligned} & V=4 \pi r^{3} / 3 \text { and } r=d / 2 \\ & V=\pi d^{3} / 6 \\ & \pi d^{3} / 6=\pi D^{2} t / 4 \\ & \text { manipulation to } t=2 d^{3} / 3 D^{2} \end{aligned}$	1	
		(ii)	Patch is only approximately circular so D varies hence mean value required \checkmark d leads to greatest uncertainty as it is cubed in the relationship so tripling the \% uncertainty associated with it \checkmark Measure d with a travelling microscope \checkmark	3	Allow: d is the smallest measurement so has the largest \% uncertainty Use larger apparatus and a bigger d value
			Total	13	

Question			Answer	Marks	Guidance
2	(a)	(i)	Place glass slide on a microscope slide with a piece of graph paper as a reference scale.	1	Credit plausible alternatives
		(ii)	Reference to $\lambda=\mathrm{dx} / \mathrm{L} \downarrow$ Smaller slit spacing gives larger fringe spacing \checkmark	2	Allow use of $\mathrm{n} \lambda=\mathrm{d} \sin \theta$
	(b)		$\lambda / d=\sin \theta, x / L=\tan \theta \checkmark$ if $L \gg \lambda, \sin \theta \approx \tan \theta \approx \theta$ (if θ is measured in radians) \checkmark $\lambda / d \approx x / L$	2	Both equations should be seen. Accept if $d>\lambda$ OR if there are many wavelengths between the slits and the screen.
	(c)		$\begin{aligned} & \text { Fringe spacing }=1.3 / 8=0.16 \mathrm{~cm}^{\checkmark} \\ & \lambda=d \sin \theta=1 \times 10^{-3} \times 0.16 \times 10^{-2} / 3 \checkmark \\ & =5.4 \times 10^{-7} \checkmark \end{aligned}$	3	OR $\lambda=\mathrm{dx} / \mathrm{L}$

3	(a)	(i)	Any three crosses at a maximum (10 V) or minimum (-10 V)	1	Accept any cross vertically above or below the trace.
		(ii)	$\begin{aligned} & \text { Emf }=-\frac{d N \varphi}{d t} \\ & 10=(-) 300 \frac{d \varphi}{d t} \\ & \frac{d \varphi}{d t}=10 / 300=0.033\left(\mathrm{~Wb} \mathrm{~s}^{-1}\right) \end{aligned}$	1	Evidence of the calculation must be seen
		(iii)	Φ goes from zero to maximum in $1 / 4$ cycle $\left(5 \times 10^{-3} \mathrm{~s}\right) \checkmark$ $\begin{aligned} & \mathrm{d} \Phi=\Phi_{\max }=\frac{d \varphi}{d t} \cdot \mathrm{dt}=3.3 \times 10^{-2} \times 5 \times 10^{-3} \\ & \Phi_{\max }=0.165 \mathrm{mWb} \checkmark \end{aligned}$	2	Accept Φ goes from minimum to maximum in half a cycle $2 \Phi_{\max }=3.3 \times 10^{-2} \times 10 \times 10^{-3}$ Accept sinusoidal integration giving $\Phi_{\max }=0.105 \mathrm{mWb}$ for full credit
	(b)		Level 3 (5-6 marks) Experiments V_{s} against V_{p} and V_{s} against N_{p} both described in detail, including graphs expected and the interpretation of them leading to the expression $V_{s} / V_{p}=N_{s} / N_{p}$ There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Experiments V_{s} against V_{p} and V_{s} against N_{p} both described or one in detail, including graphs expected and some interpretation of them leading to the expression $\mathrm{V}_{\mathrm{s}} / \mathrm{V}_{\mathrm{p}}=$ $\mathrm{N}_{\mathrm{s}} / \mathrm{N}_{\mathrm{p}}$ There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) $\checkmark \checkmark$ Either experiments V_{s} against V_{p} or V_{s} against N_{p} described	6	Indicative points include: V_{s} against V_{p} identified as additional experiment. V_{s} against N_{p} identified as additional experiment. Statement of variables held constant for each experiment. Details of graphs plotted : e.g. V_{s} against V_{p} showing direct proportion V_{s} against $1 / \mathrm{N}_{\mathrm{p}}$ indicating inverse proportion between V_{s} and N_{p} Clear link to $\mathrm{V}_{\mathrm{s}} / \mathrm{V}_{\mathrm{p}}=\mathrm{N}_{\mathrm{s}} / \mathrm{N}_{\mathrm{p}}$

	with some interpretation of results leading to an appreciation of the relationship, $\mathrm{V}_{\mathrm{s}} / \mathrm{V}_{\mathrm{p}}=\mathrm{N}_{\mathrm{s}} / \mathrm{N}_{\mathrm{p}}$ The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. $\mathbf{0}$ marks No response or no response worthy of credit.	Total	$\mathbf{1 0}$			

SECTION B

Question			Answer	Marks	Guidance
4	(a)	(i)	Points plotted correctly \checkmark uncertainty bars for temperature plotted correctly \checkmark uncertainty bars for volume plotted correctly \checkmark Straight line of best fit plotted going through all of the error bars \checkmark	4	$\pm 1 / 2$ square $\pm 1 / 2$ square $\pm 1 / 2$ square
		(ii)	$\begin{aligned} & 1 / 30=0.033 \text { or } 3.3 \% \checkmark \\ & 5 / 130=0.038 \text { or } 3.8 \% \end{aligned}$	2	Accept as a decimal Accept as a decimal. Accept to 1 sf.
		(iii)	Calculation of the gradient $=4.29 \times 10^{-10}$ Gradient shown to be equivalent to $\frac{N k}{P}$ or $\frac{n R}{P} \checkmark$ Correct values substituted in; $\frac{4.5 \times 10^{-6} \times 6.022 \times 10^{23} \times 1.38 \times 10^{-23}}{P}=4.29 \times 10^{-10}$ Or $\frac{4.5 \times 10^{-6} \times 8.31}{P}=4.29 \times 10^{-10} \checkmark$ Evaluation, $\mathrm{P}=87.2 \mathrm{kPa} \checkmark$	4	Must be clearly shown that graph was used rather than the data. Gradient within the range $4.0 \times 10^{-10}-5.1 \times 10^{-10}$ Penalise small triangles Gives answer within range $73.3-93.5 \mathrm{kPa}$
	(b)	(i)	Suitable line of best fit drawn with x-intercept in the range -260 to -280.	1	Only straight LOBF given credit.
		(ii)	Particles slow down to zero speed \checkmark as the average energy of particles reduces Gas will liquefy/solidify \checkmark As inter-molecular bonds will form \checkmark	4	OWTTE Zero velocity will not be achieved/particles will continue to vibrate Absolute zero cannot be reached
		(iii)	$\frac{\mathrm{b}(\mathrm{i})-273}{-273}(\times 100 \%) \checkmark$	1	Must be the candidate's value from \mathbf{b} (i) Accept a decimal accepted value must be the denominator

Question		Answer	Marks	Guidance
	(iv)	Meaningful comparison of percentage uncertainty and percentage difference. Correct conclusion.	2	Expect \% uncert > \% diff accurate
	(v)	If accurate from b(iv) yes (no mark) As T is directly proportional to $\vee \checkmark$	1	If inaccurate from b(iv) no (no mark) As T is not directly proportional to V
	(vi)	Calculation of molecular mass $=\frac{28}{6.0 \times 10^{23}}=4.7 \times 10^{-23} \mathrm{~g} \checkmark$ Equation of $p V=n R T$ and $p V=1 / 3 N m c^{2}$ re-arranged to $\sqrt{\overline{c^{2}}}=\frac{3 k T}{m} \checkmark$ Calculation of $\sqrt{\overline{c^{2}}}$ for both temperatures: For $\mathrm{T}=293 \mathrm{~K}, \sqrt{\overline{c^{2}}}=508 \mathrm{~ms}^{-1} \mathrm{~A}$ For $\mathrm{T}=77 \mathrm{~K}, \sqrt{\overline{c^{2}}}=$ $260 \mathrm{~ms}^{-1} \checkmark$ Ratio 1.95 : $1 \checkmark$	4	Accept use of $\mathrm{KE}=1 / 2 m \overline{c^{2}}$ and $K E=3 / 2 k T$ Accept 1.95
		Total	21	

