(1) Q1 Hunky Pory (1971)

$$
\text { Q2a) } \begin{aligned}
g=\frac{G M}{r^{2}} \quad \therefore r & =\sqrt{\frac{G M}{g}}=\sqrt{\frac{6.67 \times 10^{-11} \times 6.4 \times 10^{23}}{3.7}} \\
r & =3.40 \times 10^{6} \mathrm{~m}=3400 \mathrm{~km}
\end{aligned}
$$

b)

$$
\begin{aligned}
V_{\text {grav }}=\frac{-G M}{r} & =\frac{-6.67 \times 10^{-11} \times 6.4 \times 10^{23}}{3390 \times 10^{3}} \\
& =-1.26 \times 10^{7} \mathrm{Jkg}^{-1}
\end{aligned}
$$

c) $E_{\text {grav }}=\frac{-G M m}{r}$
at surface $E_{\text {gav }}=\frac{-6.67 \times 10^{-11} \times 6.4 \times 10^{23} \times 2500}{3390 \times 10^{3}}$

$$
\begin{aligned}
&=-3.15 \times 10^{10} \mathrm{~J} \\
& \text { in orbit } \quad \begin{aligned}
& E_{\text {gav }}=\frac{-6.67 \times 10^{-11} \times 6.4 \times 10^{23} \times 2500}{\left(3390 \times 10^{3}+280 \times 10^{3}\right)} \\
&=-2.91 \times 10^{10} \mathrm{~J} \\
& \Delta E=-2.91 \times 10^{10}--3.15 \times 10^{10}=2.4 \times 10^{9} \mathrm{~J}
\end{aligned}
\end{aligned}
$$

Q2 d) $\frac{m v^{2}}{r}=\frac{G M m}{r^{2}}$

$$
\begin{aligned}
& \therefore V^{2}=\frac{G M}{r} \quad \& \quad V=\sqrt{\frac{G M}{\Gamma}} \\
& V=\sqrt{\frac{6.67 \times 10^{-11} \times 6.4 \times 10^{23}}{3390 \times 10^{3}+280 \times 10^{3}}}=3411 \mathrm{~ms}^{-1} \\
& E_{K}=\frac{m v^{2}}{2}=\frac{2500 \times 3411^{2}}{2}=1.45 \times 10^{10} \mathrm{~J}
\end{aligned}
$$

e) $E_{\text {TOTAL }}=2.4 \times 10^{9}+1.45 \times 10^{10}=1.69 \times 10^{10} \mathrm{~J}$

$$
\% \text { kinetic }=\frac{1.45 \times 10^{10}}{1.69 \times 10^{10}} \times 100=86 \%
$$

$\%$ gravitational $=100-86=14 \%$

$$
T=-24 \times 3600+40 \times 60=88800 \mathrm{~s}
$$

Q 2

$$
\text { f) } \begin{aligned}
& \quad \frac{m V^{2}}{r}=\frac{G M m}{r^{2}} \quad \therefore V^{2}=\frac{G M}{r} \\
& T=\frac{2 \pi r}{V} \quad \therefore V^{2}=\left(\frac{2 \pi r}{T}\right)^{2} \\
& \therefore \quad \\
& \frac{G M}{r}=\frac{4 \pi^{2} r^{2}}{T^{2}} \quad \therefore r=\sqrt[3]{\frac{G M T^{2}}{4 \pi^{2}}} \\
& r=\sqrt[3]{\frac{6.67 \times 10^{-11} \times 6.4 \times 10^{23} \times 88800^{2}}{4 \pi^{2}}} \\
& \Gamma=2.043 \times 10^{7} \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\text { Altitude } & =r-\text { radius of mars } \\
& =2.043 \times 10^{7}-3390 \times 10^{3} \\
& =1.70 \times 10^{7} \mathrm{~m}=17000 \mathrm{~km}
\end{aligned}
$$

Q3 a) Width of image $=22.0 \mathrm{~cm}$ (on screen) Width of Mars in image 16.5 cm
Fraction of Mars in image $=\frac{16.5}{22}=0.75$

$$
\begin{aligned}
\therefore \text { Number of pixels across Mars } & =0.75 \times 500 \\
& =375 \text { pixels }
\end{aligned}
$$

Resolution (size that I pixel represents) $=\frac{3390 \times 10^{3}}{375}$

$$
=9040 \mathrm{~m}=9 \mathrm{~km} \text { pixel }^{-1}
$$

It should be double this $-18 \mathrm{~km} /$ pixel I used the radius when I should have used the diameter!
b)

$$
\begin{aligned}
500 \times 500 \times 24 & =6 \times 10^{6} \text { bits } \\
=6 \times 10^{6} / 8 & =7.5 \times 10^{5} \text { bytes } \\
& =750 \mathrm{k} \text { Bytes or } 0.75 \text { M Bytes }
\end{aligned}
$$

c) Number of alternatives $=2^{24}=16777216$
d)

$$
\begin{aligned}
6 \times 10^{6} / 2.5 \times 60 & =4 \times 10^{4} \text { bit s }^{-1} \\
& =5 \mathrm{kByte} \mathrm{~s}^{-1}
\end{aligned}
$$

i) Increasing brightness could make it easier to see detail in dark areas of the image
ii) Increasing contracts could make it easier to see detail in uniform areas in the image where there is little variation in colour or brightness
iii) Noise reduction can remove any anomolous bright or dark spots making the image look smoother - but some detail may be lost.
iv) Edge deflection will hilight placer in the image where there is a sharp transition from one pixel value to another. For example where one type of surface changes to another ar a boundary.
v) False colour could, like a contrast increase, highlight detail in areas of the image that seem to have lith detail ar variation in colour or shade.

Q4 a) $T^{2} \propto r^{3}$

$$
\therefore T \propto \sqrt{r^{3}}
$$

radius increases by factor of $\frac{2.3 \times 10^{11}}{1.5 \times 10^{11}}=1.53$
$\therefore T$ will increase by factor of $\sqrt{1.53^{3}}=1.89$
\therefore Period $=365.25 \times 1.89=690$ Earth days
b)i) $V=\frac{2 \pi r}{T}=\frac{2 \pi \times 2.3 \times 10^{11}}{687 \times 24 \times 3600}=2.4 \times 10^{4} \mathrm{~ms}^{-1}$
ii) $a=\frac{v^{2}}{r}=\frac{\left(2.4 \times 10^{4}\right)^{2}}{2.3 \times 10^{11}}=2.5 \times 10^{-3} \mathrm{~ms}^{-2}$
c) $\begin{aligned} \text { Min distance (5) (8) } & =2.3 \times 10^{11}-1.5 \times 10^{11} \\ & =8 \times 10^{10} \mathrm{~m}\end{aligned}$

$$
=8 \times 10^{10} \mathrm{~m}
$$

$$
\text { Time }=\frac{2 \times \text { dist }}{c}=\frac{2 \times 8 \times 10^{10}}{3 \times 10^{8}}=530 \mathrm{~s}(8.9 \mathrm{~min})
$$

Max distance (s) (s)

$$
\text { Time }=\frac{2 \times \text { dist }}{c}=\frac{2 \times 3.8 \times 10^{11}}{3 \times 10^{8}}=2500 \mathrm{~s}(42 \mathrm{~min})
$$

Sa)

$$
\begin{aligned}
& p V=\frac{1}{3} N m c^{2} \quad \& \quad p V=n R T=N k T \\
& \therefore \quad \frac{1}{3} N m c^{2}=N k T \\
& \therefore \quad \overline{c^{2}} \quad \frac{3 k T}{m} \\
& C_{r m s}=\sqrt{c^{2}}=\sqrt{\frac{3 k T}{m}}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \text { i) Mass of } \mathrm{CO}_{2} \text { molecule }=\frac{4.4 \times 10^{-2} \mathrm{~kg} \mathrm{~mol}^{-1}}{6.02 \times 10^{23} \mathrm{~mol}^{-1}} \\
&=7.31 \times 10^{-26} \mathrm{~kg} \\
& C_{\mathrm{rm} 3}=\sqrt{\frac{3 \times 1.38 \times 10^{-23} \times 210}{7.31 \times 10^{-26}}}=345 \mathrm{~ms}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ii) } \begin{aligned}
\text { Mass of } N_{2} \text { molecule } & =\frac{2.8 \times 10^{-2}}{6.02 \times 10^{23}} \\
& =4.65 \times 10^{-26} \mathrm{~kg} \\
C_{\text {rms }}=\sqrt{\frac{3 \times 1.38 \times 10^{-23} \times 210}{4.65 \times 10^{-26}}} & =432 \mathrm{~ms}^{-1}
\end{aligned}
\end{aligned}
$$

Sc)

$$
\begin{aligned}
E_{k} & =E_{\text {grav }} \\
\frac{m V^{2}}{2} & =\frac{G M m}{r} \quad \therefore V^{2}=\frac{2 G M}{r} \\
V_{e x c} & =\sqrt{\frac{2 G M}{r}}
\end{aligned}
$$

d)

$$
\begin{aligned}
V_{\text {ese }} & =\sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 6.4 \times 10^{23}}{3390 \times 10^{3}}} \\
& =5020 \mathrm{~ms}^{-1}
\end{aligned}
$$

e) At 210 K the root mean square speed of both CO_{2} and N_{2} is less than the escape velocity. However this is a mean speed and some molecules are liker to exceed the escape velocity. It is move probable for N_{2} as its Crus is higher. This could be why Mars has an atmosphere of CO_{2} and not N_{2}.

$$
\begin{aligned}
& \mathrm{N}_{2}=\frac{432}{5020} \times 100=8.6 \% \text { of escape velocity } \\
& \mathrm{CO}_{2}=\frac{345}{5020} \times 100=6.9 \% \text { of escape velocity }
\end{aligned}
$$

Q6a) Energy to escape $=-E_{\text {gray }}=\frac{G M m}{r}$
For $\mathrm{CO}_{2} \quad m=4.4 \times 10^{-2} / 6.02 \times 10^{23}=7.31 \times 10^{-26} \mathrm{ky}$

$$
\begin{aligned}
E_{\text {esc }} & =\frac{6.67 \times 10^{-11} \times 6.4 \times 10^{23} \times 7.31 \times 10^{-26}}{3390 \times 10^{3}} \\
& =9.20 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

For $N_{2} m=2.8 \times 10^{-2} / 6.02 \times 10^{23}=4.65 \times 10^{-26} \mathrm{~kg}$

$$
\begin{aligned}
E_{\text {ese }} & =\frac{6.67 \times 10^{-11} \times 6.4 \times 10^{23} \times 4.65 \times 10^{-26}}{3390 \times 10^{3}} \\
& =5.85 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

$$
e^{-E / k T} \text { Fraction for } \mathrm{CO}_{2}=e^{-9.2 \times 10^{-19} / 1.38 \times 10^{-23} \times 210}
$$

$$
=e^{-317}
$$

Fraction for $N_{2}=e^{-5.85 \times 10^{-19} / 1.38 \times 10^{-23} \times 210}$

$$
\begin{aligned}
&=\frac{e^{-201}}{\text { Ratio }=e^{-201} / e^{-317}} \\
&=e^{-201--317}=e^{116} \\
&=2.4 \times 10^{50}
\end{aligned}
$$

N_{2} molecules are 10^{50} times more likely to escape Mars - so no N_{2} on Mars.

Q6b) Close to the surface $\Delta E_{\text {gar }}=m g \Delta h$
or $E_{\text {grave }}=m g h$ for shout.
Fraction of molecules with energy $E=e^{-E / K T}$

$$
\therefore \text { Fraction }=e^{-m g n / k T}
$$

at height, h
since $\rho V=N K T \quad \rho \propto N$ (number of molecule)

$$
\therefore p=p_{0} e^{-m g h / k T}
$$

c)

$$
\begin{aligned}
p & =0.6 \times 10^{3} \times e^{\left(\frac{-7.31 \times 10^{-26} \times 3.7 \times 22 \times 10^{3}}{1.38 \times 10^{-23} \times 210}\right)} \\
& =77 \mathrm{~Pa}
\end{aligned}
$$

Q) a) Risk $=20 \times 10^{-3} \times 3 \%=0.06 \%$
b)

$$
\begin{aligned}
& \text { Dose }=80 \times 10^{-3} \times 20=1.6 \mathrm{SV} \\
& \text { Risk }=1.6 \times 3 \%=4.8 \% \\
& 4.8 \% \times 500=24
\end{aligned}
$$

Q 8 a) $\quad E_{k}=\frac{m v^{2}}{2} \quad \therefore \quad V=\sqrt{\frac{2 E_{k}}{m}}$

$$
V=\sqrt{\frac{2 \times 10 \times 10^{3} \times 1.6 \times 10^{-19}}{1.673 \times 10^{-27}}}=\underline{\underline{1.38 \times 10^{6} \mathrm{~ms}^{-1}}}
$$

b)

$$
\text { Angle }=\tan ^{-1}(1 / 320)=0.179^{\circ}
$$

$O R \approx 1 / 320$ radians
c) $F=q v B$ \& $F=m v^{2} / r$

$$
\begin{gathered}
\therefore q v B=m v^{2} / r \quad \therefore r=\frac{m v}{q B} \\
r=\frac{1.673 \times 10^{-27} \times 1.38 \times 10^{6}}{1.6 \times 10^{-19} \times 2.0 \times 10^{-6}}=7.2 \times 10^{3} \mathrm{~m}
\end{gathered}
$$

$$
\begin{aligned}
\theta=\frac{\operatorname{arc}}{\mathrm{rad}}=\quad \therefore \quad \operatorname{arc} & =\theta \times \mathrm{rad} \\
& =1 / 320 \times 7.2 \times 10^{3}=22.5 \mathrm{~m}
\end{aligned}
$$

