OCR Physics B

Question	Answer	Marks
1	С	1
2	B	1
3	В	1
		•
4	$I = \frac{\Delta Q}{\Delta t} \Longrightarrow \Delta Q = I \Delta t = 350 \times 10^{-3} \text{A} \times 1 \text{s} = 0.35 \text{C}$	1
l	$Ne = \Delta Q \Rightarrow N = \frac{\Delta Q}{e} = \frac{0.35 \text{ C}}{1.6 \times 10^{-19}} = 2.1875 \times 10^{18} = 2.2 \times 10^{18} (2 \text{ s.f.})$	1
5	p.d. across 5.0 Ω resistor = p.d. across terminals = 8.6 V $R = \frac{V}{I} \Rightarrow I = \frac{V}{R} = \frac{8.6 \text{ V}}{1.72 \text{ A}} = 1.72 \text{ A}$	1
	p.d. across internal resistance <i>r</i> ('lost volts') $V_r = 9.0 \text{ V} - 8.6 \text{ V} = 0.4 \text{ V}$	1
	$r = \frac{V_{\rm R}}{I} = \frac{0.4 \text{ V}}{1.72 \text{ A}} = 0.2326 \Omega = 0.23 \Omega (2 \text{ s.f.})$ $G = \frac{I}{V} = \frac{0.16 \text{ A}}{1.2 \text{ V}} = 0.1333 \text{ S}$	1
6	$G = \frac{l}{V} = \frac{0.16 \text{ A}}{1.2 \text{ V}} = 0.1333 \text{ S}$	1
	$G = \sigma \frac{A}{L} \Rightarrow \sigma = \frac{GL}{A}$	1
	Where L = 0.85 m and A = $\pi \times (0.05 \times 10^{-3} \text{ m})^2 = 7.854 \times 10^{-9} \text{ m}^2$ $\sigma = \frac{GL}{A} = \frac{0.1333 \text{ S} \times 0.85 \text{ m}}{7.854 \times 10^{-9} \text{ m}^2} = 1.443 \times 10^7 \text{ S m}^{-1} (2 \text{ s.f.})$	1
_		1
7 a	$V_{\text{out}} = \frac{R_2}{R_1 + R_2} \times V_{\text{in}}$, where R_2 is the LDR, R_1 is the thermistor and $V_{\text{in}} = 4.5 \text{ V}$	1
	$V_{in} = 4.5 \text{ V}$ $R_1 = 10 \text{ k}\Omega \text{ and } R_2 = 1000 \text{ k}\Omega \text{ under the conditions stated}$ $V_{out} = \frac{1000 \text{ k}\Omega}{(100 \text{ k}\Omega + 1000 \text{ k}\Omega\Omega)} \times 4.5 \text{ V} = \frac{1000 \text{ k}\Omega}{1100 \text{ k}\Omega} \times 4.5 \text{ V} = 4.091 \text{ V} = 4.1 \text{ V}$	1
	(2 s.f.)	1
7 b	R_2 will rise immediately while R_1 will be unchanged (it may rise a little, slowly) R_2 will now be a larger fraction of ($R_1 + R_2$)	1
	So V _{out} will rise	1
8 a i	$P = IV = 10 \text{ A} \times 120 \text{ V} = 1200 \text{ W}$	1
8 a ii	$R = \frac{V}{I} = \frac{120 \text{ V}}{10 \text{ A}} = 12 \Omega$	1
8 b	$P = \frac{E}{\Delta t} \Rightarrow \Delta t = \frac{E}{P} = \frac{370 \times 10^3 \text{ J}}{1200 \text{ W}} = 308.3 \text{ s} = 310 \text{ s} (2 \text{ s.f.})$	1
8 c	Assumption: resistance is the same Justification: temperature is kept the same by the water in the kettle	1
	$R = \frac{V}{I} \Longrightarrow I = \frac{V}{R} = \frac{230 \text{ V}}{12 \Omega} = 19.17 \text{ A}$	1
	<i>P</i> = <i>IV</i> = 19.17 A × 230 V = 4408 W	1
	$\Delta t = \frac{E}{P} = \frac{370 \times 10^3 \text{ J}}{4408 \text{ W}} = 83.93 \text{ s} = 84 \text{ s} (2.\text{s.f.})$	1
0 4		1
8 d	Current drawn by the kettle > 13 A The kettle would blow a fuse/overheat and cause a fire.	1

OCR Physics B

3 Sensing Answers to practice questions

9 a	Circuit should have:	
	Battery of e.m.f. in range 1–20 V in series with thermistor and fixed	
	resistor.	1
	Fixed resistor should be of value between 33 k Ω at 0 °C and 680 Ω .	1
	V _{out} measured across ends of fixed resistor.	1
9 b	Immerse thermistor and a thermometer in a water bath.	1
	Take regular readings of V_{out} over the range 0 °C (ice/water mix) to 100 °C	
	(boiling).	1
	Plot calibration graph of V_{out} against temperature.	1
9 c	Calculate V_{out} , using the chosen value of fixed resistor and e.m.f., at 0 °C,	
	20 °C, 80 °C and 100 °C	2
	(all correct = 2 marks: at least one correct = 1 mark)	
	(typical values, for R_{fixed} = 10 k Ω , are 1.0 V, 2.0 V, 4.0 V and 4.2 V	
	respectively)	
	Compare changes in V _{out} between 0 °C and 20 °C and between 80 °C and	
	100 °C.	1
	Recognise that sensitivity (change in p.d. per °C) is greater at lower	
	temperatures.	1