Question	Answer	Marks
1	D	1
2	C	1
3	C	1
4	$\begin{aligned} & \text { Energy }=\frac{1}{2} \times 5 \mathrm{~N} \times 0.09 \mathrm{~m} \\ & =0.2 \mathrm{~J} \end{aligned}$	1
5 a	Taking the gradient of the linear section of the graph $\frac{140 \mathrm{MPa}-0 \mathrm{MPa}}{0.005}$ $280000 \mathrm{MPa}\left(2.8 \times 10^{11} \mathrm{~Pa}\right)$	1
5 b	The non-linear section shows plastic deformation.	1
6 a	Brittle material fracture with little plastic deformation and break into sharp fragments	$\begin{array}{\|l} \hline 1 \\ 1 \\ \hline \end{array}$
6 b	Any reasonable example, for example: a wine glass	1
6 c	Any reasonable example of a material and a situation in which toughness is important, for example steel. In crumple zones.	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
7	Cross-sectional area of wire $=2.8 \times 10^{-6} \mathrm{~m}^{2}$ Radius of wire $=9.44 \ldots \times 10^{-4} \mathrm{~m}$ Diameter $=1.9 \times 10^{-3} \mathrm{~m}$. Examiners will give full credit for correct final answer	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$
8 a	The graph is a straight line through the origin.	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
8 b	Choosing a data pair from the graph for example $10.0 \mathrm{~N}, 1.1 \mathrm{~mm}$ $\begin{aligned} & E=\frac{\sigma}{\varepsilon}=\frac{F L}{x A} \Rightarrow A=\frac{F L}{x E}=\frac{10.0 \mathrm{~N} \times 1.9 \mathrm{~m}}{1.1 \times 10^{-3} \mathrm{~m} \times 1.8 \times 10^{11} \mathrm{Nm}^{-2}}=9.59 \times 10^{-8} \mathrm{~m}^{2} \\ & \text { Diameter }=2 \times \sqrt{\frac{A}{\pi}}=3.5 \times 10^{-4} \mathrm{~m}(2 \text { s.f. }) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
8 ci	Yield stress is the stress at which plastic deformation begins. Breaking stress is the stress at which the material fractures (breaking stress is often referred to as fracture stress).	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
8 c ii	$\begin{aligned} & \text { breaking stress }=\text { breaking force } \div \text { cross-sectional area } \\ & \frac{18.0 \mathrm{~N}}{9.59 \times 10^{-8} \mathrm{~m}^{2}}=1.9 \times 10^{8} \mathrm{~Pa} \end{aligned}$	
8 c iii	Yield strength is important because, for example, a suspension bridge must not yield under its load. Yielding can be just as damaging and dangerous as breaking.	1
9 ai	$\%$ uncertainty of extension measurement $=6(.25) \%$ \% uncertainty of length measurement $=0.7 \%$ The extension measurement gives the greatest \% uncertainty.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
9 a ii	The \% uncertainty can be reduced by using a longer original length of band. The same absolute uncertainty will produce a smaller \% uncertainty because the absolute value of extension will be greater for a given load when using a longer band.	
9 bi	$E=\frac{\sigma}{\varepsilon}=\frac{F L}{x A}$ Hence, choose the largest possible values for F and L, and the smallest possible values for x and A. Largest $F=0.505 \mathrm{~N}$	1

	Smallest $A=3.88 \mathrm{~mm}^{-2}=3.88 \times 10^{-6} \mathrm{~m}^{2}$ Largest $L=0.146 \mathrm{~m}$ Smallest $x=0.0075$ Value of E from these values $=2.5(3) \times 10^{6} \mathrm{~Pa}$ $\mathbf{9} \mathbf{b}$ ii percentage uncertainty $=\frac{2.5(3) \times 10^{6}-2.3 \times 10^{6}}{2.3 \times 10^{6}}=10 \%$	1
$\mathbf{9} \mathbf{b}$ iii	lgnoring the uncertainty in length in the calculation from i gives a result of $2.5(2) \times 10^{6} \mathrm{~Pa}$. This gives a percentage uncertainty of 9.6%, showing that the uncertainty in length contributes very little to the overall uncertainty.	1

