Oxford A Level Sciences

OCR Physics B

4 Testing materials Answers to practice questions

Question	Answer	Marks
1	D	1
2	C	1
3	C	1
4	Energy = $\frac{1}{2} \times 5 \text{ N} \times 0.09 \text{ m}$	1
	= 0.2 J	1
5 a	Taking the gradient of the linear section of the graph $\frac{140 \text{MPa} - 0 \text{MPa}}{0.005}$ 280 000 MPa (2.8 × 10 ¹¹ Pa)	1
5 b	The non-linear section shows plastic deformation.	1
6 a	Brittle material fracture with little plastic deformation and break into sharp fragments	1
6 b	Any reasonable example, for example: a wine glass	1
6 C	Any reasonable example of a material and a situation in which toughness is important, for example steel. In crumple zones.	1
7	Cross-sectional area of wire = $2.8 \times 10^{-6} \text{ m}^2$ Radius of wire = $9.44 \times 10^{-4} \text{ m}$ Diameter = $1.9 \times 10^{-3} \text{ m}$. Examiners will give full credit for correct final answer	1 1 1
8 a	The graph is a straight line through the origin.	1 1
8 b	Choosing a data pair from the graph for example 10.0 N, 1.1 mm $E = \frac{\sigma}{\varepsilon} = \frac{FL}{xA} \Rightarrow A = \frac{FL}{xE} = \frac{10.0 \text{ N} \times 1.9 \text{ m}}{1.1 \times 10^{-3} \text{ m} \times 1.8 \times 10^{11} \text{ Nm}^{-2}} = 9.59 \times 10^{-8} \text{ m}^2$ Diameter = 2 × $\sqrt{\frac{A}{\pi}}$ = 3.5 × 10 ⁻⁴ m (2 s.f.)	1 1 1
8 c i	Yield stress is the stress at which plastic deformation begins. Breaking stress is the stress at which the material fractures (breaking stress is often referred to as fracture stress).	1 1
8 c ii	breaking stress = breaking force ÷ cross-sectional area $\frac{18.0N}{9.59 \times 10^{-8} \text{ m}^2} = 1.9 \times 10^8 \text{ Pa}$	1
8 c iii	Yield strength is important because, for example, a suspension bridge must not yield under its load. Yielding can be just as damaging and dangerous as breaking.	1
9 a i	% uncertainty of extension measurement = 6(.25)% % uncertainty of length measurement = 0.7 % The extension measurement gives the greatest % uncertainty.	1 1 1
9 a ii	The % uncertainty can be reduced by using a longer original length of band. The same absolute uncertainty will produce a smaller % uncertainty because the absolute value of extension will be greater for a given load when using a longer band.	1
9 b i	$E = \frac{\sigma}{\varepsilon} = \frac{FL}{xA}$ Hence, choose the largest possible values for <i>F</i> and <i>L</i> , and the smallest possible values for <i>x</i> and <i>A</i> . Largest <i>F</i> = 0.505 N	

Oxford A Level Sciences

OCR Physics B

4 Testing materials Answers to practice questions

1

	Smallest A = 3.88 mm ⁻² = $3.88 \times 10^{-6} m^2$	1
	Largest $L = 0.146$ m	
	Smallest $x = 0.0075$	1
	Value of <i>E</i> from these values = $2.5(3) \times 10^6$ Pa	1
9 b ii	percentage uncertainty = $\frac{2.5(3) \times 10^6 - 2.3 \times 10^6}{2.3 \times 10^6} = 10\%$	2
9 b iii	Ignoring the uncertainty in length in the calculation from i gives a result of $2.5(2) \times 10^6$ Pa. This gives a percentage uncertainty of 9.6%, showing that	
	9 b ii 9 b iii	Smallest $A = 3.88 \text{ mm}^{-2} = 3.88 \times 10^{-6} \text{ m}^2$ Largest $L = 0.146 \text{ m}$ Smallest $x = 0.0075$ Value of E from these values $= 2.5(3) \times 10^6 \text{ Pa}$ 9 b iipercentage uncertainty $= \frac{2.5(3) \times 10^6 - 2.3 \times 10^6}{2.3 \times 10^6} = 10\%$ 9 b iiiIgnoring the uncertainty in length in the calculation from i gives a result of $2.5(2) \times 10^6 \text{ Pa}$. This gives a percentage uncertainty of 9.6%, showing that

the uncertainty in length contributes very little to the overall uncertainty.

© Oxford University Press 2015 This resource sheet may have been changed from the original. www.oxfordsecondary.co.uk/acknowledgements