Oxford A Level Sciences

OCR Physics B

5 Looking inside materials Answers to practice questions

Question	Answer	Marks
1	D	1
2	Values of 4 male of Silver 0.108kg	
	Volume of 1 mole of Silver = $\frac{0.108 \text{ kg}}{10490 \text{ kg m}^{-3}}$	
	$= 1.029 \times 10^{-5} \mathrm{m}^3$	1
		1
	Volume of 1 atom of Silver = $\frac{1.029 \times 10^{-5} \text{m}^3}{6.0 \times 10^{23}}$ = 1.7 × 10 ⁻²⁹ m ³	1
3	 Any points from : Dislocation is a defect in the regular crystalline structure of a material. 	
	 Dislocations in metals are mobile and make the metal softer. Alloying atoms pin the dislocations. 	1 mark per correct point
	 Alloying metals make them harder if the plastic flow is reduced. 	(2 max)
4 a	12 cm	1
4 b	The long chain molecule uncoils;	1
-	Under tension, increasing the length as it changes from a random	
	orientation of its repeating lengths to a linear orientation.	1
4 c	Strain = $LN - L\sqrt{N}$	
	Strain = $\frac{LN - L\sqrt{N}}{L\sqrt{N}}$	1
	$= \frac{8L - L\sqrt{8}}{L\sqrt{8}} = \sqrt{8} - 1$	
	$=\frac{62}{1}\frac{2}{\sqrt{8}}=\sqrt{8}-1$	
	= 1.8	1
	(2 s.f.)	4
5	Any points from:	1
5	 Strong, directional bonds make the material hard because the 	
	planes of atoms cannot slip over each other.	
	This is a consequence of the lack of mobile dislocations in	
	directionally-bonded materials.	1 mark per
	Lack of mobile dislocations reduces plastic behaviour.	correct point
^	Stress concentrations lead to brittle fracture.	(3 max)
6	 Any points from: Polythene and rubber are long-chain molecules. 	
	 Long-chain molecules can 'uncoil' under stress. 	
	 'uncoiling' allows large strains before breaking. 	1 mark per
	 Rubber molecules relax back into a random orientation once the 	correct point
	deforming load is removed.	(3 max)
7	$E = \frac{400 \times 10^{-12} \text{ N/2} \times 10^{-17} \text{ m}^2}{10^{-17} \text{ m}^2}$	
	0.2	1
	$= 1.0 \times 10^8 \text{ N m}^{-2}$	1
8 a	0.063 kg	•
	Volume = $\frac{0.063 \text{ kg}}{8960 \text{ kg m}^{-3} \times 6 \times 10^{23}}$	
	$= 1.17 \times 10^{-29} \text{ m}^3 (3 \text{ s.f.})$	1
0 h	$2.3 \times 10^{-10} \text{ m}$	1
8 b		
8 C	$0.5 \text{ mm}^2 = 5 \times 10^{-7} \text{ m}^2$	1
	Number of atoms = $\frac{5 \times 10^{-7} \text{ m}^2}{5.6 \times 10^{-20} \text{ m}^2} = 8.9 \times 10^{12}$	
	$5.6 \times 10^{-20} \text{ m}^2$	1
8 d	$8.9 \times 10^{12} \times 5 \times 10^{-11}$ N	1
	= 450 N	1

Oxford A Level Sciences

OCR Physics B

5 Looking inside materials Answers to practice questions

8 e	Breaking stress = $\frac{450 \text{ N}}{0.5 \times 10^{-6} \text{ m}^2}$	1
	=9 × 10 ⁸ Pa	1
8 f	This is much higher than the actual estimate. This model does not take into account dislocations in the crystalline	1
	structure;	1
9 a	which lower the yield and breaking stress of the material. Strong/3-d bonding;	1
54	No slip/dislocation (to allow plastic flow) because of directional bonding.	1
9 b	 Any three from: Scratches on surface weaken material. Scratches have stress concentrations at their tips. Cracks propagate through material. The crack will open under the correct direction of bending. Brittle fracture along the length of the scratch. Local stress is not relieved by plastic flow. 	1 mark per correct point (3 max)
9 c	In the solid the ions are locked in position; near melting temperature the ions gain mobility as glass softens; solid ions cannot flow/move to carry current OR near melting temperature charge flows as ions can move.	1 1 1
10 a	To fill the space completely, each atom of radius <i>r</i> would occupy a cube of radius 2 <i>r</i> . Volume of the cube = 8 r^3 Ratio of volumes = $\frac{\frac{4}{3}\pi r^3}{8r^3} = \frac{\pi}{6}$	1
10 b	Distance between centres of atoms = <i>d</i> Length $L^2 = d^2 + d^2$ so $L = \sqrt{2d}$	1
	Length of gap between atoms = $\sqrt{2d} - 2(\frac{d}{2}) = \sqrt{2d} - d \approx 0.4d$	1