Oxford A Level Sciences

OCR Physics B

6 Wave behaviour Answers to practice questions

Question	Answer	Marks
1	В	1
2	Velocity in class $-3 \times 10^8 \text{ m s}^{-1}$	
	$(\sin i/\sin r)$	1
	$= 1.9 \times 10^8 \text{ m s}^{-1}$	1
3 a	Coherent waves have a constant phase difference.	1
3 b	$\lambda = d \sin \theta = \sin 3^{\circ} / (80 \times 10^{3})$	1
	$= 6.5 \times 10^{-7} \text{ m}$	1
4	Graph takes the same shape as that already shown. Correct phase difference of $\pi/2$ radians.	1
5 a	See Figure 2, Topic 6.4.	1
	limited spreading	1
5 b	Increases	1
	By a factor of $\sqrt{2}$	1
5 C	Waves diffract (curve) more as they pass through the gap.	1
6 a	$-1 = 670 \times 10^{-9}$	
	$a = \frac{1}{\sin 31^{\circ}}$	1
	$= 1.3 \times 10^{-6} \mathrm{m}$	1
6 b	$\sin^{2\lambda} \ge 1$	
	$\frac{d}{d}$	1
7	The maximum value a sine can take is 1	1
7 а г	See Figure 10, Topic 6.1	1
7 a ii	2.4 m	1
7 a iii	Marking points, any three from:	1 mark for
	Waves travel along the tube and reflect.	each correct
	 Waves travening in opposite directions superpose. Nodes are positions where the waves superpose in antiphase 	(3 max)
	Antinodes are positions where the waves superpose in phase.	
7 b i	With the closed end on the left the pattern is: N A N A	1
7 b ii	f 340 × 3	1
	$T = \frac{1}{2.4}$	4
	= 425 Hz	I
7 b iii	Wavelength remains constant (assuming the length of the tube doesn't change)	1
	As $f = \frac{V}{1}$	1
	The frequency will rise when the temperature rises.	1
8 a	% uncertainty in slit separation = 20%	1
	The next biggest uncertainty is about 4%	1
	Calculated value of wavelength = 4.8×10^{-7} m.	1
	Largest value of wavelength from uncertainties = 6.25×10^{-7} m Smallest value of wavelength from uncertainties = 3.54×10^{-7} m	1
	Value with uncertainty = $4.8 \pm 2.7 \times 10^{-7}$ m	1
	You can also tackle this question by considering % uncertainties. (see	
	Module 2)	

Oxford A Level Sciences

OCR Physics B

6 Wave behaviour Answers to practice questions

8 b i	The fringe spacing will remain the same.	1
	Doubling the slit separation halves the fringe spacing, but doubling the	
	distance will double the tringe separation. The two changes cancel.	1
8 6 11	These changes will have halved the percentage uncertainty in the slit	
	separation;	1
	and reduced the percentage uncertainty in the length measurement.	1
1	These changes will reduce the overall uncertainty. One disadvantage is	
	that the fringes will be less intense and so measurement may be difficult.	1
9 a	Marking points:	
	 Identifying path difference as the difference in distances from the 	
	speakers to the microphone.	1
	• Maximum signal when path difference = $n \lambda$ or minimum signal	
	1	1
	when path difference = $(n + \frac{1}{2})\lambda$.	
	Wayes from speakers meet in phase at microphone when a	
	maximum is detected or meet in antiphase at microphone when a	1
	minimum is detected	
	 As microphone moves along line XX, the nath difference between 	1
	the two speakers and the microphone changes	
9 h		1
90	0.0 11	1
9 c	velocity at 20° c 293 10175	
	$\frac{1}{1000} = 10000000000000000000000000000000$	
	This is a nereortage difference of 1 750/	1
	This is a percentage difference of 1.75%	1
	The wavelength of the sound in air will increase by the same factor.	1
	This will cause the separation of maxima and minima along line XY to	
	Increase (a little).	1
10 a	The distance been two nodes is half a wavelength so one wavelength =	
	0.65 m × 2 = 1.3 m	1
10 b	speed = frequency x wavelength = 82 Hz x 1.3 m	1
	$= 106.6 = 1.1 \times 10^2 \text{ m} (2 \text{ s.f.})$	1
10 c i		
	$v = \sqrt{-3} T = v^2 \mu = 106.6^2 \times 8.4 \times 10^{-3} \text{ kg}$	1
1	$\vee \mu$	
	= 95 N (2 s.f.)	1
10 c ii	The velocity of the wave along the thinner string is greater so frequency	
	will be greater as the wavelength of the wave along both strings is the	
	same.	1
10 d	Marking points, any three from:	
	Waves travel along the string in both directions.	
	Waves are reflected from the ends of the string.	
	Wayes travelling in different directions superpose	
	 At the ends of the string there is zero displacement 	
	 At the ends of the string there is zero displacement. 	1 mark for
	Points of minimum oscillation are nodes.	each correct
	 Points of maximum oscillation are antinodes. 	noint
	 Midway between two nodes the waves add to give 	(3 max)
	maximum displacement.	(S max)