Quantum behaviour Answers to practice questions

Question	Answer	Marks
1	A	1
2	Energy of a photon of light of wavelength 400 nm $\begin{aligned} & =\frac{6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s} \times 3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}{400 \times 10^{9} \mathrm{~m}} \\ & =4.95 \times 10^{-19} \mathrm{~J} \end{aligned}$ Number of photons emitted per second $=$ energy emitted per second/energy per photon $=18 \times 10^{-3} \mathrm{~J} / 4.95 \times 10^{-19} \mathrm{~J}(1)=3.6 \times 10^{16}$ photons. Number of photons emitted per second = energy emitted per second/energy per photon $\begin{aligned} & =\frac{18 \times 10^{-3} \mathrm{~J}}{4.95 \times 10^{-19} \mathrm{~J}} \\ & =3.6 \times 10^{16} \text { photons } \end{aligned}$	1 1 1 1 1
3	$\begin{aligned} & \text { Momentum of electron }=\sqrt{2 m E_{\mathrm{k}}} \\ & =\left(2 \times 9.11 \times 10^{-31} \mathrm{~kg}^{2} 1.6 \times 10^{3} \mathrm{eV} \times 1.6 \times 10^{-19} \mathrm{C}\right)^{\frac{1}{2}} \\ & =2.159 \ldots \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \\ & \text { De Broglie wavelength }=\frac{6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}}{2.159 . . \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}} \\ & =3.11 \times 10^{-11} \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
4	$\begin{aligned} & \text { Energy required to release electron in } \mathrm{J}=3.7 \times 1.6 \times 10^{-19} \mathrm{~J} \\ & \text { k.e. } \text { max }=\frac{6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s} \times 3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}{170 \times 10^{-9} \mathrm{~m}}-3.7 \times 1.6 \times 10^{-19} \mathrm{~J} \\ & =5.7 \times 10^{-19} \mathrm{~J} \end{aligned}$	$\begin{aligned} & 1 \\ & \\ & 1 \\ & 1 \end{aligned}$
5	$\begin{aligned} & \text { Momentum of electron }=\frac{6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}}{6.6 \times 10^{-10} \mathrm{~m}}=1.0 \times 10^{-24} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \\ & \begin{aligned} \text { Velocity of electron } & =\frac{1.0 \times 10^{-24} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}}{9.11 \times 10^{-31} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}} \\ & =1.1 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} \end{aligned}$	1 1 1
6 a	Phase difference of 2π radians corresponds to one wavelength path difference, therefore, a path difference of $\frac{\lambda}{3}$ will correspond to a phase difference of $\frac{2 \pi}{3}$.	1
6 b	Resultant forms an equilateral triangle. Length of resultant $=$ length of each individual phasor arrow	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
6 c	Length of resultant arrow at $P_{2}=2 \times$ length of individual phasor arrow. Ratio of lengths $=2$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
6 d	$\begin{aligned} \text { Ratio } & =\frac{1^{2}}{2^{2}} \\ & =0.25 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
6 e	Three phasors form equilateral triangle. No resultant phasor. This model gives a zero probability for a photon arriving at P_{1} when the three slits are open.	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$

7 Quantum behaviour
 Answers to practice questions

7 a	When the intensity of the light incident on the surface is doubled the number of electrons released per second will also double; as twice as many photons are striking the surface each second. As the energy of each individual photon is unchanged, the ejected photoelectrons will have the same maximum kinetic energy.	1 1 1 1
7 b	$\begin{aligned} & 0.2 \mathrm{eV}=4.5 \times 10^{14} \mathrm{~Hz} \times h-\Phi \\ & 1.4 \mathrm{eV}=7.5 \times 10^{14} \mathrm{~Hz} \times h-\Phi \\ & 4.5 \times 10^{14} \mathrm{~Hz} \times h-0.2 \mathrm{eV}=7.5 \times 10^{14} \mathrm{~Hz} \times h-1.2 \mathrm{eV} \\ & 3.0 \times 10^{14} \mathrm{~Hz} \times h=1.2 \times 1.6 \times 10^{-19} \mathrm{~J} \\ & h=6.4 \times 10^{-34} \mathrm{~J} \mathrm{~s} \end{aligned}$	1 1 1 1
7 c	Using calculated value for h : Work function $=2.56 \times 10^{-19} \mathrm{~J}$ Frequency $=\frac{2.56 \times 10^{-19} \mathrm{~J}}{6.4 \times 10^{-34} \mathrm{~J} \mathrm{~s}}=4.0 \times 10^{14} \mathrm{~Hz}$ (Using 6.6×10^{-34} gives the same value to 2 s.f.)	1 1
8 a i	All in phase	1
8 a ii	3 A	1
8 b i	One phasor rotation corresponds to λ. $120^{\circ}=1 / 3$ rotation for extra $\frac{\lambda}{3}$	1 1
8 b ii	(Arrows correctly drawn in circles; three arrows add tip-to-tail to give zero resultant.	1
8 b iii	$\sin \theta=\frac{\Delta x}{b / 3 \times 1}=\frac{\lambda / 3}{b / 3}=\frac{\lambda}{b} \operatorname{so~} \lambda=b \sin \theta$	1
8 c	$\begin{aligned} & \sin \theta=\frac{\lambda}{b}=\frac{2.4 \mathrm{~cm}}{6.0 \mathrm{~cm}}=0.40 \\ & \theta=24^{\circ}(2 \mathrm{~s} . \text { f. }) \end{aligned}$	1 1

