Question	Answer	Marks
1	A	1
2	D	1
3	B	1
4	(Marking points assume upwards is positive, but the opposite is acceptable) Starts with positive velocity. Velocity drops linearly to a negative value. Labels start e.g. 'leaves board', zero velocity e.g. 'highest point' and end 'enters water'.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
5	Axes with appropriate scales, correctly labelled quantity/units Points correctly plotted Smooth best-fit curve through all points Tangents drawn at two different times (not 0 s or 2.5 s) Correct calculation of velocities = gradients using $\Delta t>0.4 \mathrm{~s}$ g found from $v=u+g \Delta t$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
6	Correct tip-to-tail diagram (accept parallelogram) Displacement magnitude $=9.9 \mathrm{~km}$ (scale drawing or Pythagoras theorem: if scale drawing used, allow value in the range $9.8-10.0 \mathrm{~km}$) Angle by direct measurement or $\tan \theta=5.2 \mathrm{~km} \div 8.4 \mathrm{~km} \Rightarrow \theta=32^{\circ}$ (can use any trigonometric function here): if direct measurement, allow $31^{\circ}-33^{\circ}$. Correct description of direction, e.g. $\mathrm{N} 31^{\circ} \mathrm{W}$, or bearing of 328°.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
7	$\begin{aligned} & \text { For the fall, } s=50 \mathrm{~m}, u=0, v=?, a=9.8 \mathrm{~m} \mathrm{~s}^{-2}, t=? \\ & s=u t+1 / 2 a t^{2} \Rightarrow 50 \mathrm{~m}=0+4.9 \mathrm{~m} \mathrm{~s}^{-2} \times t^{2} \Rightarrow t^{2}=50 \mathrm{~m} \div 4.9 \mathrm{~m} \mathrm{~s}^{-2}=10.2 \mathrm{~s}^{2} \\ & t=\sqrt{ }\left(10.2 \mathrm{~s}^{2}\right)=3.19 \mathrm{~s} \\ & \text { horizontally, } s=u t=15 \mathrm{~m} \mathrm{~s}^{-1} \times 3.19 \mathrm{~s}=48 \mathrm{~m} \text { (2 s.f.) } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
8 a	$3.0 \mathrm{~m} \mathrm{~s}^{-2}$	1
8 b	0.57 s	1
9 a	Any three from: Accelerates, then constant velocity, then decelerates to rest. Constant velocity is $29 \mathrm{~m} \mathrm{~s}^{-1}$. Mean acceleration is greater than mean deceleration. Acceleration/deceleration (either) greatest in centre of velocity change.	1 mark for each correct point (3 max)
9 b	Suggestion, e.g. need to stop at exact point on station. Explanation, e.g. if braked too rapidly, might have some coaches not on platform.	
9 c	Tangent drawn at 215 s Gradient triangle with base at least 25 s used Gradient correctly calculated and answer expressed to 2 s.f. with units $\mathrm{m} \mathrm{s}^{-2}$ (expect value $=0.35 \mathrm{~m} \mathrm{~s}^{-2}$)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
9 d	Distance = area under graph Method: counting squares, or approximating curves to straight lines with same area below, or dividing curved parts into approximately straight-line sections Answer in range $5100 \mathrm{~m}-5300 \mathrm{~m}$	$\begin{aligned} & 1 \\ & \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
10 a	$\begin{aligned} & v_{\mathrm{N}}=20 \mathrm{~m} \mathrm{~s}^{-1} \cos \left(40^{\circ}\right)=183.9 \mathrm{~m} \mathrm{~s}^{-1}=180 \mathrm{~m} \mathrm{~s}^{-1}(2 \mathrm{s.f.}) \\ & v_{\mathrm{w}}=20 \mathrm{~m} \mathrm{~s}^{-1} \sin \left(40^{\circ}\right)=154.3 \mathrm{~m} \mathrm{~s}^{-1}=150 \mathrm{~m} \mathrm{~s}^{-1}(2 \mathrm{~s} . \mathrm{f} .) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
10 b	Tip-to-tail scale drawing of addition of wind velocity due E to plane velocity relative to the air to give resultant velocity. Resultant velocity is in direction $\mathrm{N} 40^{\circ} \mathrm{W}$ (bearing 320°). Correct ratio of wind speed to magnitude of plane velocity relative to the air of 15:240.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$

