Question	Answer	Marks
1	C	1
2	A	1
3	Momentum of bullet $=m v=3.0 \times 10^{-3} \mathrm{~kg} \times 370 \mathrm{~m} \mathrm{~s}^{-1}=1.11 \mathrm{~N} \mathrm{~s}$ Momentum is conserved, so momentum of rifle $=-1.11 \mathrm{~N} \mathrm{~s}$ $\begin{aligned} & \text { For rifle, } m v=-1.11 \mathrm{Ns}=3.2 \mathrm{~kg} \times v \text { so } v=\frac{-1.11 \mathrm{Ns}}{3.2 \mathrm{~kg}} \\ & =-0.3469 \mathrm{~m} \mathrm{~s}^{-1} \text { so speed of recoil }=0.3469 \mathrm{~m} \mathrm{~s}^{-1}=0.35 \mathrm{~m} \mathrm{~s}^{-1}(2 \text { s.f. }) \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \end{array}$ 1
4 a	$F=\frac{\Delta p}{\Delta t}=\frac{\left(4.0 \mathrm{~kg} \times 0.8 \mathrm{~m} \mathrm{~s}^{-1}-0\right)}{0.15 \mathrm{~s}}=\frac{3.2 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}}{0.15 \mathrm{~s}}=21 \mathrm{~N}(2 \mathrm{~s} . \mathrm{f} .)$ (One mark for correct method, one for substituting correctly and evaluating the answer. This could also be done by calculating a and using $F=m a$.)	2
4 b	Kinetic energy of each mass before collision $=1 / 2 m v^{2}=0.5 \times 4.0 \mathrm{~kg} \times\left(0.8 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}=1.28 \mathrm{~J}$ Masses are stationary after collision, so all kinetic energy is dissipated (mostly as heat) so energy dissipated $=2 \times 1.28 \mathrm{~J}=2.6 \mathrm{~J}(2 \mathrm{~s} . f$.) (One mark for correct method, one for substituting correctly and evaluating the answer.)	2
5 a	$\begin{aligned} & \text { kinetic energy gained }=\text { potential energy lost } \\ & 1 / 2 m v^{2}=m g h=900 \mathrm{~kg} \times 9.8 \mathrm{~m} \mathrm{~s}^{-2} \times 60 \mathrm{~m}=529200 \mathrm{~J} \\ & v^{2}=\frac{2 \times 529200 \mathrm{~J}}{900 \mathrm{~kg}}=1176 \mathrm{~m}^{2} \mathrm{~s}^{-2} \Rightarrow v=\sqrt{ }\left(1176 \mathrm{~m}^{2} \mathrm{~s}^{-2}\right)=34 \mathrm{~m} \mathrm{~s}^{-1}(2 \mathrm{~s} . f .) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
5 b	Some of the potential energy will be done as work against frictional forces.	1
6 a	$\begin{aligned} & a=\frac{\Delta v}{\Delta t}=\frac{27 \mathrm{~m} \mathrm{~s}^{-1}}{5.6 \mathrm{~s}}=4.821 \mathrm{~m} \mathrm{~s}^{-2} \\ & F=m a=1100 \mathrm{~kg} \times 4.821 \mathrm{~m} \mathrm{~s}^{-2}=5303 \mathrm{~N}=5300 \mathrm{~N}(2 \text { s.f. }) \end{aligned}$	1 1
6 b	$\begin{aligned} & P=F v \text { so mean power }=\text { force } \times \text { mean velocity } \\ & \text { velocity goes up uniformly from } 0 \text { to } 27 \mathrm{~m} \mathrm{~s}^{-1} \text {, so mean velocity } \\ & =1 / 2 \times 27 \mathrm{~m} \mathrm{~s}^{-1}=13.5 \mathrm{~m} \mathrm{~s}^{-1} \\ & P=5303 \mathrm{~N} \times 13.5 \mathrm{~m} \mathrm{~s}^{-1}=71600 \mathrm{~W}=72000 \mathrm{~W}(2 \mathrm{~s} . f .) \\ & \text { (Can also use } P=\frac{\text { gain in kinetic energy }}{\text { time }} \text { with one mark for method and } \\ & \text { one for evaluation) } \end{aligned}$	1 1
7 a	For the particle, kinetic energy $=\frac{1}{2} m v^{2} \Rightarrow v=\sqrt{\frac{2 E_{\mathrm{k}}}{m}}$ $=\sqrt{\frac{2 \times 8.0 \times 10^{-13}}{6.6 \times 10^{-27}}}=1.5 \ldots \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ Momentum is conserved, so $m_{1} v_{1}=m_{2} v_{2} \Rightarrow v_{1}=\frac{m_{2} v_{2}}{m_{1}}=2.8 \ldots \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$ kinetic energy of nucleus $=\frac{1}{2} m v^{2}=0.5 \times 3.6 \times 10^{-25} \mathrm{~kg} \times\left(2.8 \ldots \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}=1.5 \times 10^{-14} \mathrm{~J}(2 \mathrm{~s} . \mathrm{f} .)$	1 1 1 1 1
7 b	velocity of particle $=5.5 \ldots \times 10^{\prime} \mathrm{m} \mathrm{s}^{-1}$ (same method as part (a)) velocity of nucleus $=140.2 \ldots \mathrm{~m} \mathrm{~s}^{-1}$ kinetic energy of nucleus $=3.5 \times 10^{-21} \mathrm{~J}$ This is over a million times smaller than the kinetic energy found in part (a) (the emitted particle was significantly lighter and possessed smaller kinetic energy).	$\begin{array}{\|l} \hline 1 \\ 1 \\ 1 \\ 1 \end{array}$

