Paper 2 Practice questions (AS Level) Answers

Question	Answer	Marks
Section A		
1 a	(A gas) in which some atoms/molecules/particles have lost electrons to become positive ions/charged ions.	1
1 b	$\lambda = \frac{C}{f} = 1.0(3) \times 10^{-7} \mathrm{m}$	1
1 c	$E = VQ = 240 \times 1.6 \times 10^{-19}$ =3.8(4) × 10 ⁻¹⁷ J	1
1 d i 1	240 V	1
1 d i 2	120 V	1
1 d ii	From the graph, $0.26(4) \mu A$ Power = $2.64 \times 10^{-7} \times 180 \times 6.2 \times 10^{6}$ = 295 W	1 1 1
2 a i	There are many small crystals with close-packed planes of different alignments/with grain boundaries.	1
2 a ii	Ductile means it can be drawn into a wire. Two marks for any two further points, e.g.: In the pure metal, there is a dislocation in the regular crystal where atoms are free to move. Slips occur easily where planes move over each other.	1 2
2 b i 1	Hard materials are difficult to dent or scratch (they resist wear).	1
2 b i 2	Hard materials last longer / don't blunt so easily / give a cleaner or more accurate cut.	1
2 b ii	 Any two points from e.g.: Metals have free/delocalised electrons. Metals have non-directional bonds which hold positive ions in lattice / allow positive ions to slip or dislocate. Any two points from e.g.: In diamond, there are bound/localised electrons which form strong directional bonds. Diamond forms a giant lattice that is hard to displace. 	2
3 a i 1	2.0 km h ⁻¹	1
3 a i 2	$8.0 \mathrm{km}\mathrm{h}^{-1}$	1
3 a ii	Time = $\frac{\text{distance}}{\text{velocity}}$ Time from A to B = $\frac{2 \text{ km}}{(5-3) \text{ km h}^{-1}} = 1 \text{ h}$	1 (for method)
	Time from B to $A = \frac{2 \text{ km}}{(5+3) \text{ km h}^{-1}} = 0.25 \text{ h}$ Total time = 1 + 0.25 = 1.25 h (1.3 h to 2 s.f.)	1
3 b i	Either correct scale drawing OR $\sin^{-1}\left(\frac{3.0}{5.0}\right)$ = 36.8 = 37° (2 s.f.)	1 1
3 b ii	resultant velocity = $\sqrt{3.0^3 + 5.0^2}$ = 4.0 km h ⁻¹ (alternatively using sin or cos 37° and a known velocity)	1

Paper 2 Practice questions (AS Level) Answers

3 c	Time taken for Q to reach $\mathbf{C} = \frac{\text{distance}}{\text{velocity}} = \frac{2.0}{4.0} = 0.50 \text{h}$	
	Therefore distance travelled by $\mathbf{P} = 0.5 \times 2.0 = 1.0 \text{ km}$	1
	$\theta = \tan^{-1} \frac{1.0}{2.0} = 26.5 = 27^{\circ} (2 \text{ s.f.})$	1
4 a i	Straight line passing through the origin of half the gradient of A.	1
4 a ii	Straight line passing through of 4 times the gradient of A.	1
4 b i	(Direct) proportionality/straight line through origin.	1
4 b ii	$\sigma = \frac{1.2(8) \times 10^8}{1.3 \times 10^8}$ $\varepsilon = 0.00070$ $E = 1.8(3) \times 10^{-11} \text{ Pa}$	1 1 1
4 c	 Any 4 sensible points, e.g.: Metal atoms lose electrons/form positive ions. Free/delocalised (negative) electrons are present. Attractive forces/non-directional bonding between positive and negative ions cause bonds. Positive metal ions are closely-packed/regularly stacked in planes or lattices. When positive ions are given small displacement, atomic planes move relative to neighbours. Ions return to their positions when the displacing force is removed. 	4
Section B		
1ai	power = $\frac{1}{4.5 \times 10^{-3}}$ = 222 D	1
1 a ii	$\frac{1}{v} = -2 + 222 = 220 \mathrm{D}$	1
	$v = 4.5(4) \times 10^{-3} \mathrm{m}$	1
1 a iii	$\frac{v}{u} = \frac{4.54 \times 10^{-8}}{0.5}$ $= 9.1 \times 10^{-3}$	1 1
1 b	Multiply both dimensions by 9.1×10^{-3} gives dimensions 2.4×2.0 mm	
1 c	Resolution = $\frac{270}{1200}$	1
	= 0.23 mm This is bigger than the width of an eyelash so if eyelashes are not separated by at least a gap of about one eyelash thick, they will not be resolved.	1
1 d i	256 levels are coded by 8 bits, which gives 3 x 8 = 24 bits per pixel	1
	bits in one image = $24 \times 1200 \times 1000 = 2.88 \times 10^7$	1
	number of images = $\frac{0.9 \times 10^9}{2.88 \times 10^7} = 31 \text{ images}$	1
1 d ii	decrease bits per image	1
	by e.g. fewer intensity levels	1
	but this will decrease image quality/accuracy of the match with object.	1

Paper 2 Practice questions (AS Level) Answers

2 a	Marks are awarded for a well-structured answer. Relevant points can include e.g.: • At low temperatures, NTC thermistors have a very large	6
	resistance whilst PTC thermistors have a reasonably low resistance.	
	At high temperatures, NTC thermistors have low (next to no) resistance whilst PTC thermistors have a very large resistance.	
	NTC thermistors display a steady exponential decline in resistance	
	with increasing temperature.PTC thermistors have a relatively steady resistance, with large	
	 and sudden increase at a given temperature. Reasons: e.g. The molecules/atoms in an NTC thermistor require 	
	energy to allow electrons to pass through the material.	
	 Reasons: e.g. The molecules/atoms in a PTC resistor change structure at a given temperature/energy so that no electrons can 	
2 b	pass freely through to material. The PTC thermistor shows a large range of resistance over a small	1
2.5	temperature range (over 100 °C), but little change around 50 °C, so it would not be suitable for keeping something at 50 °C.	
	The NTC thermistor shows a steady decreases in resistance over this temperature range, so it would be suited to the task	1
2 c i	$P = IV = \frac{V^2}{R}$	1
	$=\frac{6.0^2}{400}$	1
	100 = 0.36 W	1
2 c ii	When the current is switched on, the temperature rises.	1
	This rise causes a slight decrease in resistance. At around 50 °C the resistance remains steady.	1 1
Section C	So the current will remain steady.	1
1 a i	Macauring from the gloss easing of the lamp rather than filement/refraction	1
	Measuring from the glass casing of the lamp rather than filament/refraction due to the glass casing	
1 a ii	Difficulty when the image of the lamp is most clear.	1
1 b i	When the image is larger and dimmer the point of greatest sharpness/clarity is harder to judge.	1
1 b ii	If the absolute uncertainty increases in proportion to distance the ratio absolute uncertainty/distance will remain constant.	1
1 c	$\frac{1}{f} = \frac{1}{v} - \frac{1}{u} = \frac{1}{0.260} - \left(-\frac{1}{1.000}\right) = \frac{63}{13} \text{ m}^{-1}$	1
	$f = \frac{13}{63} = 0.206 \mathrm{m}$	1
1 d	Calculating lowest value of <i>f</i> as 0.200 highest value as 0.212	1
	range = $\pm - 0.006$ m	1
1 e	which is greater than 5 mm Equation is of the form $y = mx + c$	1
	y identified with $\frac{1}{v}$, x identified with $\frac{1}{u}$, and c (y-intercept) with $\frac{1}{f}$.	1
1 f	$\frac{1}{f} = 5.0 \mathrm{m}^{-1} \mathrm{so} f = 0.20 \mathrm{D}$	1
1 g	Best-fit line highlights the presence of outliers. A simple mean could be incorrectly weighted by such data points.	1