Oxford A Level Sciences
OCR Physics B

Question	Answer	Marks
Section A		
1 a	(A gas) in which some atoms/molecules/particles have lost electrons to become positive ions/charged ions.	$\begin{array}{\|l} \hline 1 \\ 1 \\ \hline \end{array}$
1 b	$\lambda=\frac{c}{f}=1.0(3) \times 10^{-7} \mathrm{~m}$	1
1 c	$\begin{aligned} & E=V Q=240 \times 1.6 \times 10^{-19} \\ & =3.8(4) \times 10^{-17} \mathrm{~J} \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
1di1	240 V	1
1di2	120 V	1
1 dii	$\begin{aligned} & \text { From the graph, 0.26(4) } \mu \mathrm{A} \\ & \text { Power }=2.64 \times 10^{-7} \times 180 \times 6.2 \times 10^{6} \\ & =295 \mathrm{~W} \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \end{array}$
2 ai	There are many small crystals with close-packed planes of different alignments/with grain boundaries.	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
2 aii	Ductile means it can be drawn into a wire. Two marks for any two further points, e.g.: - In the pure metal, there is a dislocation in the regular crystal where atoms are free to move. - Slips occur easily where planes move over each other.	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ \hline \end{array}$
2 bi 1	Hard materials are difficult to dent or scratch (they resist wear).	1
2bi2	Hard materials last longer / don't blunt so easily / give a cleaner or more accurate cut.	1
2 bii	Any two points from e.g.: - Metals have free/delocalised electrons. - Metals have non-directional bonds - which hold positive ions in lattice / allow positive ions to slip or dislocate. Any two points from e.g.: - In diamond, there are bound/localised electrons - which form strong directional bonds. - Diamond forms a giant lattice that is hard to displace.	2 2
3ail	$2.0 \mathrm{~km} \mathrm{~h}^{-1}$	1
3ai2	$8.0 \mathrm{~km} \mathrm{~h}^{-1}$	1
3 aii	$\begin{aligned} & \text { Time }=\frac{\text { distance }}{\text { velocity }} \\ & \text { Time from } \mathbf{A} \text { to } \mathbf{B}=\frac{2 \mathrm{~km}}{(5-3) \mathrm{km} \mathrm{~h}^{-1}}=1 \mathrm{~h} \\ & \text { Time from } \mathbf{B} \text { to } \mathbf{A}=\frac{2 \mathrm{~km}}{(5+3) \mathrm{km} \mathrm{~h}^{-1}}=0.25 \mathrm{~h} \\ & \text { Total time }=1+0.25=1.25 \mathrm{~h} \mathrm{(1.3} \mathrm{~h} \mathrm{to} 2 \text { s.f. }) \end{aligned}$	1 (for method) 1
3 bi	Either correct scale drawing OR $\begin{aligned} & \sin ^{-1}\left(\frac{3.0}{5.0}\right) \\ & =36.8 \ldots=37^{\circ}(2 \text { s.f. }) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
3 b ii	$\begin{aligned} & \text { resultant velocity }=\sqrt{3.0^{3}+5.0^{2}} \\ & =4.0 \mathrm{~km} \mathrm{~h} \\ & \text { (alternatively using sin or } \cos 37^{\circ} \text { and a known velocity) } \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$

Oxford A Level Sciences
OCR Physics B

3 c	Time taken for \mathbf{Q} to reach $\mathbf{C}=\frac{\text { distance }}{\text { velocity }}=\frac{2.0}{4.0}=0.50 \mathrm{~h}$ Therefore distance travelled by $\mathbf{P}=0.5 \times 2.0=1.0 \mathrm{~km}$ $\theta=\tan ^{-1} \frac{1.0}{2.0}=26.5 \ldots=27^{\circ}(2$ s.f. $)$	1 1
4 ai	Straight line passing through the origin of half the gradient of A.	1
4 aii	Straight line passing through of 4 times the gradient of A .	1
4 b i	(Direct) proportionality/straight line through origin.	1
4 b ii	$\begin{aligned} & \sigma=\frac{1.2(8) \times 10^{8}}{1.3 \times 10^{8}} \\ & \varepsilon=0.00070 \\ & E=1.8(3) \times 10^{-11} \mathrm{~Pa} \end{aligned}$	1 1 1
4 c	Any 4 sensible points, e.g.: - Metal atoms lose electrons/form positive ions. - Free/delocalised (negative) electrons are present. - Attractive forces/non-directional bonding between positive and negative ions cause bonds. - Positive metal ions are closely-packed/regularly stacked in planes or lattices. - When positive ions are given small displacement, atomic planes move relative to neighbours. - Ions return to their positions when the displacing force is removed.	4
Section B		
1 a	$\text { power }=\frac{1}{4.5 \times 10^{-3}}=222 \mathrm{D}$	1
1 a ii	$\begin{aligned} & \frac{1}{v}=-2+222=220 \mathrm{D} \\ & v=4.5(4) \times 10^{-3} \mathrm{~m} \end{aligned}$	1 1
1 a iii	$\begin{aligned} & \frac{v}{u}=\frac{4.54 \times 10^{-8}}{0.5} \\ & =9.1 \times 10^{-3} \end{aligned}$	1 1
1 b	Multiply both dimensions by 9.1×10^{-3} gives dimensions $2.4 \times 2.0 \mathrm{~mm}$	
1 c	$\begin{aligned} & \text { Resolution }=\frac{270}{1200} \\ & =0.23 \mathrm{~mm} \end{aligned}$ This is bigger than the width of an eyelash so if eyelashes are not separated by at least a gap of about one eyelash thick, they will not be resolved.	1 1 1
1 di	256 levels are coded by 8 bits, which gives $3 \times 8=24$ bits per pixel bits in one image $=24 \times 1200 \times 1000=2.88 \times 10^{7}$ number of images $=\frac{0.9 \times 10^{9}}{2.88 \times 10^{7}}=31$ images	1 1 1
1 dii	decrease bits per image by e.g. fewer intensity levels but this will decrease image quality/accuracy of the match with object.	1 1 1

Oxford A Level Sciences
OCR Physics B

2 a	Marks are awarded for a well-structured answer. Relevant points can include e.g.: - At low temperatures, NTC thermistors have a very large resistance whilst PTC thermistors have a reasonably low resistance. - At high temperatures, NTC thermistors have low (next to no) resistance whilst PTC thermistors have a very large resistance. - NTC thermistors display a steady exponential decline in resistance with increasing temperature. - PTC thermistors have a relatively steady resistance, with large and sudden increase at a given temperature. - Reasons: e.g. The molecules/atoms in an NTC thermistor require energy to allow electrons to pass through the material. - Reasons: e.g. The molecules/atoms in a PTC resistor change structure at a given temperature/energy so that no electrons can pass freely through to material.	6
2 b	The PTC thermistor shows a large range of resistance over a small temperature range (over $100^{\circ} \mathrm{C}$), but little change around $50^{\circ} \mathrm{C}$, so it would not be suitable for keeping something at $50^{\circ} \mathrm{C}$. The NTC thermistor shows a steady decreases in resistance over this temperature range, so it would be suited to the task	1
2 ci	$\begin{aligned} & P=I V=\frac{V^{2}}{R} \\ & =\frac{6.0^{2}}{100} \\ & =0.36 \mathrm{~W} \end{aligned}$	1 1 1
2 cii	When the current is switched on, the temperature rises. This rise causes a slight decrease in resistance. At around $50^{\circ} \mathrm{C}$ the resistance remains steady. So the current will remain steady.	1 1 1 1
Section C		
1 ai	Measuring from the glass casing of the lamp rather than filament/refraction due to the glass casing	1
1 a ii	Difficulty when the image of the lamp is most clear.	1
1 bi	When the image is larger and dimmer the point of greatest sharpness/clarity is harder to judge.	1
1 b ii	If the absolute uncertainty increases in proportion to distance the ratio absolute uncertainty/distance will remain constant.	1
1 c	$\begin{aligned} & \frac{1}{f}=\frac{1}{v}-\frac{1}{u}=\frac{1}{0.260}-\left(-\frac{1}{1.000}\right)=\frac{63}{13} \mathrm{~m}^{-1} \\ & f=\frac{13}{63}=0.206 \mathrm{~m} \end{aligned}$	1
1 d	Calculating lowest value of f as 0.200 highest value as 0.212 range $=+/-0.006 \mathrm{~m}$ which is greater than 5 mm	1 1 1 1
1 e	Equation is of the form $y=m x+c$ y identified with $\frac{1}{v}, x$ identified with $\frac{1}{u}$, and $c\left(y\right.$-intercept) with $\frac{1}{f}$	1
1 f	$\frac{1}{f}=5.0 \mathrm{~m}^{-1} \text { so } f=0.20 \mathrm{D}$	1
1 g	Best-fit line highlights the presence of outliers. A simple mean could be incorrectly weighted by such data points.	1

