Question	Answer	Marks
1	D	1
2	$\begin{aligned} & \text { Activity }=(-) 5.0 \times 10^{-11} \mathrm{~s}^{-1} \times\left(\frac{8.0 \times 10^{-11} \mathrm{~kg}}{4.0 \times 10^{-25} \mathrm{~kg}}\right) \\ & =1 \times 10^{4} \mathrm{~Bq} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
3 a	The chance of a given (or single) nucleus decaying in one second.	$\begin{array}{\|l} \hline 1 \\ 1 \\ \hline \end{array}$
3 b	$\begin{aligned} & T_{1 / 2}=\frac{\ln 2}{3.8 \times 10^{-12} \mathrm{~s}^{-1}} \\ & =1.8 \times 10^{11} \mathrm{~s} \text { (or } 5700 \text { years) } \end{aligned}$	
3 c	$\begin{aligned} & \frac{N}{N_{0}}=\mathrm{e}^{-3.8 \times 10^{-12} \times 14000 \times 3.2 \times 10^{7}} \\ & =0.18(18 \%) \end{aligned}$	
4 a	The equation of the line is of the form $y=m x+c$. The decay constant is the negative of the gradient.	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
4 b	Suitable pairs of points taken from graph Leading to value of decay constant in range 0.009 to $0.011 \mathrm{~s}^{-1}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
4 c	$\begin{aligned} & T_{1 / 2}=\frac{\ln 2}{(\text { answer from partb) }} \\ & \text { Answers in range } 63 \mathrm{~s} \text { to } 77 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
5	$\begin{aligned} & 0.1=\mathrm{e}^{-\mathrm{tt}} \\ & \mathrm{ln} 0.1=-7.6 \times 10^{-10} \mathrm{~s}^{-1} \times \mathrm{t} \\ & t=3(.03) \times 10^{9} \mathrm{~s} \\ & =95 \text { years } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
6 a	Third row: 810, 7290 Fourth row: 7290, 729, 6561	$\begin{array}{\|l} \hline 1 \\ 1 \\ \hline \end{array}$
6 b	Substitution in equation; evaluation to 6700 . Note that the time interval is 30 s . The iterative model keeps the rate of decay constant during each ten second interval. This exaggerates the rate of decay. Reducing the time interval between iterations will give a result closer to that obtained using the solution to the differential equation.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
7	$\begin{aligned} & \text { Energy }=\frac{1}{2} C V^{2} \\ & C=\frac{2 \times 1 \times 10^{6}}{\left(10 \times 10^{3}\right)^{2}} \\ & =0.02 \mathrm{~F} \end{aligned}$	
8 a	$\begin{aligned} & V_{\text {voltmeter }}=V_{0} e^{-U R C} \\ & 1.9=3.0 \times \mathrm{e}^{-100 / R C} \\ & \ln 1.9=\ln 3.0-\frac{100}{R C} \\ & R=\frac{100}{220 \times 10^{-6} \times(\ln 3-\ln 1.9)} \\ & =1.0 \mathrm{M} \Omega \end{aligned}$	1 1 1
8 b	220 s	1

\begin{tabular}{|c|c|c|}
\hline 8 c \& \[
\begin{aligned}
\& 0.5=3.0 \times \mathrm{e}^{-T V L Z} \\
\& T=(\ln 3.0-\ln 0.5) \times 220 \\
\& =40 \mathrm{~s}(1 \text { s.f. })
\end{aligned}
\] \& 1
1 \\
\hline 9 a \& \[
\begin{aligned}
\& \text { time constant }=2.2 \mathrm{~kW} \times 4700 \mathrm{mF} \\
\& =10.3 \mathrm{~s}
\end{aligned}
\] \& 1
1
1 \\
\hline 9 b \& \begin{tabular}{l}
If exponential, the results will show the constant ratio property.
\[
0.92 / 1.50=0.61
\] \\
\(0.58 / 0.92=0.63\) \\
\(0.35 / 0.58=0.61 \quad\) (one mark for two calculations, two marks for three calculations) \\
Within the precision of the voltmeter and allowing for experimental errors, this seems reasonable as the ratios are constant. (Third mark only available if three correct calculations are made.)
\end{tabular} \& 2 \\
\hline 10 \& \[
\begin{aligned}
\& R=5 \mathrm{M} \Omega \\
\& \ln \left(\frac{V}{V_{0}}\right)=-t / R C \\
\& C=1.7 \times 10^{-3} \mathrm{~F}
\end{aligned}
\] \& 1
1
1 \\
\hline 11 a \& \[
\begin{aligned}
\& Q=10^{-2} \mathrm{~F} \times 6 \mathrm{~V} \\
\& =6 \times 10^{-2} \mathrm{C}
\end{aligned}
\] \& 1
1 \\
\hline 11 b \& \[
\begin{aligned}
\& I=\frac{V}{R}=\frac{6 \mathrm{~V}}{6000 \Omega} \\
\& =1 \mathrm{~mA}
\end{aligned}
\] \& 1
1 \\
\hline 11 c \& Assuming constant current: charge leaving capacitor in \(10 \mathrm{~s}=1 \times 10^{-2} \mathrm{C}\) which is roughly \(17 \%\) of the original charge. \& 1
1
1 \\
\hline 11 d \& \begin{tabular}{l}
\[
R C=6 \times 10^{3} \Omega \times 10^{-2} \mathrm{~F}
\]
\[
=60 \mathrm{~s}
\] \\
The time constant is the time taken for the charge on the capacitor to fall to \(e^{-1}\) \\
or about \(37 \%\) of its original value.
\end{tabular} \& 1
1
1
1 \\
\hline 11 e \& \[
\begin{aligned}
\& E=\frac{1}{2} \times 0.01 \mathrm{~F} \times(6 \mathrm{~V})^{2} \\
\& =0.18 \mathrm{~J} \\
\& \text { (or use } E=\frac{1}{2} C V^{2} \text {) }
\end{aligned}
\] \& 1 \\
\hline 11 f \& \(36 \Omega\) \& 1 \\
\hline 11 g \& \begin{tabular}{l}
Assume complete discharge in five time periods (5T)
\[
\begin{aligned}
\& =5 \times 36 \mathrm{~W} \times 10^{-2} \mathrm{~F} \\
\& =1.8 \mathrm{~s}
\end{aligned}
\] \\
Limitations: not fully discharged and the resistance of the filament will not be constant throughout the time interval/not as high as the working resistance calculated.
\end{tabular} \& 1
1
1

1 \\
\hline
\end{tabular}

