Oxford A Level Sciences

OCR Physics B

11 Modelling oscillations Answers to practice questions

Question	Answer	Marks
1	В	1
2 a i	F = -1.0 N	1
	$a = -4.0 \text{ m s}^{-2}$ F = -0.5 N	1
2 a ii	$F = -0.5 \mathrm{N}$	1
	$a = -2.0 \text{ m s}^{-2}$	1
2 b	$T = 2\pi \sqrt{\frac{0.25}{10}}$	
	$\sqrt{10}$	1
	= 1.0 s (2 s.f.)	1
3 a	<i>T</i> = 0.011 s	1
3 b	$a = (-)4\pi^2 \times 90^2 \times 0.06$	1
	$a = (-)4\pi^{2} \times 90^{2} \times 0.06$ = (-)1.9 × 10 ⁴ m s ⁻²	1
4 a	0.001 40 m	1
4 b	$2\pi f = 1650$	1
	f = 262.6 Hz	1
5	Sand will just leave contact with the plate when the downward acceleration	1
	is 9.8 m s ⁻² . $A = 4\pi^2 t^2 A$	
		1
	$A = \frac{9.8}{4\pi^2 \times 15^2}$	•
	= 1.1 mm	1
	This will occur at highest point of the oscillation.	1
6 a		
	Substitution into $f = \frac{1}{r} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$	1
	Evaluation of $k = 45.5 \text{ N m}^{-1}$	
6 b	Curve starts at amplitude 2 mm for frequency = 0.1 Hz	1
0.5	rises to maximum of 8.0 mm at 2.4 Hz	1
	falls after this value, becoming lower than 2 mm at highest frequency	1
	values,	
	graph a smooth curve resembling figure 7, section 11.4.	1
	The amount of damping is not discussed so the peak can be sharp or broad.	
7	See figure 2, section 11.4. (1 mark for each curve).	2
8 a		
oa	$k = \frac{4\pi^2 m}{T^2}$	1
		•
	$= 79000\mathrm{Nm^{-1}}$	1
8 b	$x = \frac{F}{F} = \frac{500 \times 10}{700000}$	
	k 79000	1
_	= 0.06 m	1
8 C	$E = \frac{1}{2} \times 79000 \times 0.1^2$	1
	= 400 J	1
8 d	maximum magnitude of velocity = $2\pi fA$	1
	= 1 m s ⁻¹ (1 s.f.) $k = 2.8 \times 10^4 \text{ N m}^{-1}$	1
9 a	$k = 2.8 \times 10^4 \mathrm{N m^{-1}}$	1
9 b	$1 \sqrt{k}$	
	$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$	1
	= 3.4 Hz	4
		1

Oxford A Level Sciences

OCR Physics B

11 Modelling oscillations Answers to practice questions

9 c	Any three of the following, for 1 mark each:	3
	 bumps/road vibrate spring at natural frequency (and resonance occurs) 	
	 (at resonance) the frame/rider experience large amplitude oscillations 	
	 damping removes energy from the system 	
	 by converting kinetic energy into heat 	
	 reducing amplitude of oscillations 	
9 d	Use amplitude A to calculate maximum kinetic energy from	
	$E = \frac{1}{2}kA^2 = 2.1$ J or 2.3 J depending on k value.	1
	Graph of correct shape and time period.	1

© Oxford University Press 2016 This resource sheet may have been changed from the original. www.oxfordsecondary.co.uk/acknowledgements