Oxford A Level Sciences

OCR Physics **B**

12 The Gravitational field Answers to practice questions

Question	Answer	Marks
1	A	1
2 a	$v = \sqrt{16 \times 9.8 \mathrm{m}\mathrm{s}^{-2} \times 0.4 \mathrm{m}}$	1
	$= 7.9 \mathrm{m s^{-2}}$	1
2 b	$f = \frac{V}{V}$	1
	$2\pi r$	1
3	Orbital period in seconds = 6.18×10^5 s	1
	$4\pi^2 \times (1.07 \times 10^9)^8$	
	$M = \frac{1}{6.67 \times 10^{-11} \times (6.18 \times 10^5)^2}$	1
	$= 1.9 \times 10^{27} \text{ kg}$	1
4	$g_{\text{Earth}} \times r_{\text{Earth}}^2 \qquad g_{\text{Mars}} \times r_{\text{Mars}}^2$	4
	mass _{Earth} = mass _{Mars}	1
	$q_{\text{Earth}} \times r_{\text{Earth}}^2 \times \text{mass}_{\text{Mars}}$	
	$g_{\text{Mars}} = \frac{g_{\text{Lattr}}}{\text{mass}_{\text{Farth}} \times r_{\text{Mars}}^2}$	1
	$9.8 \times 1^2 \times 0.11$	
	$= \frac{1 \times 0.53^2}{1 \times 0.53^2}$	1
	$= 3.8 \text{ N kg}^{-1}$	1
5 a	The area between the line and the x-axis from 0×10^6 m to 20×10^6 m.	1
5 b	800 kg × 4.7×10^7 J kg ⁻¹	1
5.0	$= 3.8 \times 10^{10}$ J	1
50	One mark for each correctly calculated value of gr^2 .	4
6 a	Potential energy = $\frac{-6.67 \times 10^{-11} \times 7.4 \times 10^{22} \times 25}{-6.67 \times 10^{-11} \times 7.4 \times 10^{22} \times 25}$	1
	1.7×10^6	1
6 h	$= -7.3 \times 10^{\circ} \text{ J}$	1
0.5	when the rock is at a great distance from the Moon,	1
	loss in E_p as it approaches the Moon = gain in E_k .	1
7 a	Arrow from satellite towards the centre of the planet.	1
7 h	There is no force in the direction of motion	1
	so no linear acceleration. However, the velocity is changing because the	1
7.0	direction of motion is changing. Acceleration is rate of change of velocity.	1
16	planet.	
7 d i	Potential energy of satellite of mass 290 kg	
	$= \frac{-6.67 \times 10^{-11} \times 6.6 \times 10^{23} \times 290}{2}$	1
	7.0×10^6	
7 d ii	=-1.0 X IU J.	1
1 4 11	$v = \sqrt{\frac{GM}{T}}$	1
	$ 1 r = 25 \times 10^3 \text{ m s}^{-1}$	
7 d jij	1 0 40	1
	$E_{\rm k} = \frac{1}{2} \times 290 \text{kg} \times (2.5 \times 10^3 \text{m s}^{-1})^2$	1
	$= 9 \times 10^8 \text{ J} (1 \text{ s.f.})$	1

Oxford A Level Sciences

OCR Physics B

12 The Gravitational field Answers to practice questions

7 d iv	Total energy = kinetic energy + potential energy $-9 \times 10^8 + (-1.8 \times 10^9) = -9 \times 10^8$	1
7 e	$E_{\rm p}$ will be twice the magnitude; velocity will be the same; $E_{\rm k}$ will be twice the magnitude; total energy will be twice the magnitude.	1 mark for each 2 correct.
8 a i	Arrow (from comet) tangential to orbit.	1
8 a ii	Arrow (from comet) at right angles to arrow A.	1
8 b i	$\frac{E_{\rm k}}{m} = \frac{v^2}{2} = 1.49 \rm{J} \rm{kg}^{-1}$	1
8 b ii	$\frac{E_{\text{total}}}{m} = \frac{E_{\text{k}}}{m} + \frac{E_{\text{p}}}{m}$ $\frac{E_{\text{total}}}{m} = 1.5 \times 10^9 \text{ J kg}^{-1} + \frac{-6.67 \times 10^{-11} \text{ J Kg}^{-2} \text{ m} \times 2.00 \times 10^{30} \text{ Kg}}{8.82 \times 10^{10} \text{ m}}$ $\frac{E_{\text{total}}}{m} = -1.247 \times 10^7 \text{ J kg}^{-1} \approx -20 \text{ MJ kg}^{-1}$	1
8 b iii	$\frac{E_{\text{total}}}{m} = \frac{E_{\text{k}}}{m} + \frac{E_{\text{p}}}{m}$ -1.247×10 ⁷ J kg ⁻¹ = $\frac{v^2}{2} + \frac{-GM}{r}$ $v = \sqrt{2\left(-1.247×10^7 - \frac{-6.67×10^{-11}×2.00×10^{30}}{5.3×10^{12}}\right)}$ = 5.0 × 10 ³ m s ⁻¹ (2 s f)	1