Oxford A Level Sciences

OCR Physics **B**

13 Our place in the Universe Answers to practice questions

Question	Answer	Marks
1	D	1
2	1.5×10 ¹¹ m	
	Distance = $\frac{1}{\tan(2.1 \times 10^{-4})}$	1
	$= 4.1 \times 10^{16} \mathrm{m}$	1
	= 4.3 light-years	1
3	Speed = $9 \times 10^6 \mathrm{m s^{-1}}$	1
4	$\lambda v = v = 30 \times 10^3 \mathrm{m s^{-1}}$	
	$\Delta \Lambda = \frac{1}{C} = \frac{1}{f} = \frac{1}{1 \times 10^9} \frac{1}{s^{-1}}$	1
	= 0.03 mm	1
5	1	1
•	$\gamma = \frac{1}{\sqrt{1-0.36}}$	1
	= 1 2	
6.0	$1 \text{ km}^{-1} \text{ w} \text{ km}^{-1} = 0^{-1}$	1
oa		I
6 b	$\frac{1}{1}$ = 4.28 × 10 ¹⁷ s	
	$(70 \mathrm{s}^{-1})$	1
	$\left(\overline{3\times10^{19}}\right)$	
	$= 1.34 \times 10^{10}$ years	1
7 a	Around 435 nm	1
7 b	435–121.6	1
	121.6	
	= 2.6	1
7 c	3.6	1
7 d	Energy of photon received = $4.5 \times 10^{-19}_{4.8}$ J	1
7.0	Energy of emitted photon = 1.6×10^{-10} J	1
7 e	Ratio of energies = 3.6 (2 S.I.) Same as the answer to part d	1
8 a	For example, for 200 million light-years:	•
	expansion speed = $2.1 \times 10^5 \text{ m s}^{-1} \text{ m.l.y.}^{-1} \times 200 \text{ m.l.y}$	
	(m.l.y represents 'million light-years')	
	$= 4.2 \times 10 \text{ ms}$	1
8 b	1	1
	$\gamma = \frac{\gamma}{1 - \frac{1}{2}}$	
	$\sqrt{1-\frac{0.1}{1}}$	
	= 1 005	1
	(This represents less than a 1% difference)	•
9 a	$\gamma = \frac{1}{1}$	
	$7 - (2.7^2)$	1
	$\sqrt{1-\frac{1}{3.0^2}}$	
	= 2.3	1
9 b	$T_{1/2} = 2.3 \times 18 \text{ ns} = 41 \text{ ns} (2 \text{ s.f.})$	
10 a	8×10 ³ m	
	$t = \frac{3 \times 10^{8} \text{ m}}{0.98 \times 3.0 \times 10^{8} \text{ ms}^{-1}}$	1
	$= 2.72 \times 10^{-5} s$	1
		I

Oxford A Level Sciences

OCR Physics B

13 Our place in the Universe Answers to practice questions

10 b	$N = -\frac{0.693 \times 2.72 \times 10^{-5}}{2}$	
	$\frac{N_{e}}{N_{e}} = e^{1.5 \times 10^{-6}}$	1
	-3.6×10^{-6}	1
	= 0.00036%	1
10 c	Number of half-lives when 8.4% remain = 3.57	1
	2.7×10^{-5} s -7.0×10^{-6} s	
	Observed half-life = $\frac{3.57}{3.57}$ = 7.6 × 10 ° s	1
	7.6×10^{-6} s	
	$1.5 \times 10^{-6} \text{ s}^{=5.1}$	1
10 d	1	
	$\gamma = \frac{1}{\sqrt{1 - 0.98^2}}$	1
	= 5.02(5)	1
	This is (approximately the same factor as in c .	1
	This agrees with the equation $t = \gamma \tau$	1
11 a	constant speed/velocity/motion (for first five years)	1
11 b i	Light goes 1 light-year in one year (gradient of 1).	1
11 b ii	line starts at t = 1.0 s and goes up and right at 45° to meet spacecraft	1
	trace,	4
11 c i	overall trip time = 8 yr	1
	distance = $\frac{-}{2}$ = 4 light-years	1
11 c ii	EITHER:	
	pulse delayed by 1 year then takes 4 years to get to spaceship;	1
	OR°	1
	Light reaches the spaceship halfway through its trip.	1
	Time when it gets there is $\frac{9+1}{2} = 5$ years	
	2	1
11 C III		
	$v = \frac{4 \text{ light- years} \times 3 \times 10^{\circ} \text{ m s}^{-1}}{-} = 2.4 \times 10^{8} \text{ m s}^{-1}$	1
	5 years	
	OR:	
	$v = \frac{4 \times 365 \times 24 \times 3600 \times 3 \times 10^{\circ}}{1000 \times 3 \times 10^{\circ}} = 2.4 \times 10^{8} \mathrm{m s^{-1}}$	1
	5×365×24×3600	
11 0 1	$\frac{1}{1} = 1.67$	1
	$1-\frac{v^2}{2}$	
	$ V c^2$	
11 d ii	6.0	1