Oxford A Level Sciences
OCR Physics B

13 Our place in the Universe Answers to practice questions

Question	Answer	Marks
1	D	1
2	$\begin{aligned} & \text { Distance }=\frac{1.5 \times 10^{11} \mathrm{~m}}{\tan \left(2.1 \times 10^{-4}\right)} \\ & =4.1 \times 10^{16} \mathrm{~m} \\ & =4.3 \text { light-years } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
3	Speed $=9 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$	1
4	$\begin{aligned} & \Delta \Lambda=\frac{\lambda v}{c}=\frac{v}{f}=\frac{30 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}}{1 \times 10^{9} \mathrm{~s}^{-1}} \\ & =0.03 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
5	$\begin{aligned} & \gamma=\frac{1}{\sqrt{1-0.36}} \\ & =1.2 \end{aligned}$	$\begin{array}{\|l} 1 \\ 1 \\ \hline \end{array}$
6 a	$\mathrm{km}^{-1} \times \mathrm{km} \mathrm{s}^{-1}=\mathrm{s}^{-1}$	1
6 b	$\begin{aligned} & \frac{1}{\left(\frac{70 \mathrm{~s}^{-1}}{3 \times 10^{19}}\right)}=4.28 \ldots \times 10^{17} \mathrm{~s} \\ & =1.34 \times 10^{10} \text { years } \end{aligned}$	1 1
7 a	Around 435 nm	1
7 b	$\begin{aligned} & \frac{435-121.6}{121.6} \\ & =2.6 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
7 c	3.6	1
7 d	$\begin{aligned} & \hline \text { Energy of photon received }=4.5 \times 10^{-19} \mathrm{~J} \\ & \text { Energy of emitted photon }=1.6 \times 10^{-18} \mathrm{~J} \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
7 e	Ratio of energies $=3.6$ (2 s.f.) Same as the answer to part d.	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
8 a	For example, for 200 million light-years: expansion speed $=2.1 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~m} . \mathrm{I} . \mathrm{y} .{ }^{-1} \times 200 \mathrm{~m} . \mathrm{l} . \mathrm{y}$ (m.l.y represents 'million light-years') $\begin{aligned} & =4.2 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} \\ & =0.14 \mathrm{c} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
8 b	$\begin{aligned} & \gamma=\frac{1}{\sqrt{1-\frac{0.1^{2}}{1}}} \\ & =1.005 \\ & \text { (This represents less than a } 1 \% \text { difference) } \end{aligned}$	
9 a	$\begin{aligned} & \gamma=\frac{1}{\sqrt{1-\frac{2.7^{2}}{3.0^{2}}}} \\ & =2.3 \end{aligned}$	
9 b	$T_{1 / 2}=2.3 \times 18 \mathrm{~ns}=41 \mathrm{~ns}(2 \mathrm{~s} . \mathrm{f}$.)	
10 a	$\begin{aligned} & t=\frac{8 \times 10^{3} \mathrm{~m}}{0.98 \times 3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}} \\ & =2.72 \times 10^{-5} \mathrm{~s} \end{aligned}$	

Oxford A Level Sciences
OCR Physics B

13 Our place in the Universe Answers to practice questions

10 b	$\begin{aligned} & \frac{N}{N_{0}}=e^{-\frac{0.693 \times 2.72 \times 10^{-5}}{1.5 \times 10^{-6}}} \\ & =3.6 \times 10^{-6} \\ & =0.00036 \% \end{aligned}$	1 1 1
10 c	Number of half-lives when 8.4% remain $=3.57 \ldots$ Observed half-life $=\frac{2.7 \times 10^{-5} \mathrm{~s}}{3.57 \ldots}=7.6 \times 10^{-6} \mathrm{~s}$ $\frac{7.6 \times 10^{-6} s}{1.5 \times 10^{-6} s}=5.1$	1
10 d	$\begin{aligned} & \gamma=\frac{1}{\sqrt{1-0.98^{2}}} \\ & =5.02(5) \\ & \text { This is (approximately the same factor as in } \mathbf{c} \text {. } \\ & \text { This agrees with the equation } t=\gamma T \end{aligned}$	1 1 1
11 a	constant speed/velocity/motion (for first five years)	1
11 b i	Light goes 1 light-year in one year (gradient of 1).	1
11 b ii	line starts at $\mathrm{t}=1.0 \mathrm{~s}$ and goes up and right at 45° to meet spacecraft trace, returning at 45° to reach Earth at 9.0 s .	1
11 c i	overall trip time $=8 \mathrm{yr}$ distance $=\frac{8}{2}=4$ light-years	1
11 c ii	EITHER: pulse delayed by 1 year then takes 4 years to get to spaceship; so event time $=4+1=5$ years OR: Light reaches the spaceship halfway through its trip. Time when it gets there is $\frac{9+1}{2}=5$ years	1 1 1
11 c iii	EITHER: $v=\frac{4 \text { light- years } \times 3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}{5 \text { years }}=2.4 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ OR: $v=\frac{4 \times 365 \times 24 \times 3600 \times 3 \times 10^{8}}{5 \times 365 \times 24 \times 3600}=2.4 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	1
11 di	$\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=1.67$	1
11 dii	6.0	1

