Oxford A Level Sciences
OCR Physics B

14 Simple models of matter
Answers to practice questions

Question	Answer	Marks
1	A	1
2	C	1
3	$\begin{aligned} & p V=n R T \\ & V=\frac{n R T}{p}=\frac{3 \times 8.31 \times 300}{3.0 \times 10^{5}} \\ & =0.025 \mathrm{~m}^{3}(2 \text { s.f. }) \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
4 a	The pressure will increase by a factor of 4 .	1
4 b	Molecules in the gas interact with each other via Van der Waal's forces, which cause a transfer of energy between molecules.	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
5	$\Delta U=m c \Delta T$ Power is the rate of change of energy with time, $\frac{\Delta U}{\Delta t}$ $\begin{aligned} & \text { So } P=\frac{m c \Delta T}{\Delta t} \text { or } \frac{\Delta T}{\Delta t}=\frac{P}{m c} \\ & =\frac{1500}{0.7 \times 4200}=0.5 \mathrm{~K} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
6 ai	$\begin{aligned} & m=\rho V=1.2 \mathrm{~kg} \mathrm{~m}^{-3} \times 4.2 \mathrm{~m}^{3}=5.04 \mathrm{Kg} \\ & \text { Number of moles }=\frac{\text { mass }}{\text { mass per mole }}=\frac{5.04 \mathrm{~kg}}{0.029 \mathrm{~kg} \mathrm{~mol}^{-1}} \\ & =170 \mathrm{~mol} \text { (} 2 \text { s.f. } \text {) } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
6 aii	Mass of mole of carbon $=$ mass of molecule \times number of molecules in a mole. Mass of a mole of carbon $=7.3 \times 10^{-26} \mathrm{~kg} \times 6.02 \times 10^{23}=0.043 \ldots \mathrm{~kg}$ Number of moles $=\frac{\text { mass }}{\text { mass per mole }}=\frac{1.5 \mathrm{~kg}}{0.043 \ldots \mathrm{~kg}}=34$ moles (2 s.f.)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
6 a iii	$\begin{aligned} & \text { pV }=n R T \\ & \text { So } p=\frac{n R T}{V}=\frac{(173+34) \mathrm{mol} \times 8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \times 270.15 \mathrm{~K}}{4.2 \mathrm{~m}^{2}} \\ & =1.2 \times 10^{5} \mathrm{~Pa}(2 \text { s.f. }) \end{aligned}$	
6 b	Reasonable suggestions can include: - Sudden pressure changes can be harmful/fatal to humans. - Sudden temperature changes can be harmful/fatal to humans. - Fire extinguisher release could cause a distraction to the driver. - Increase in carbon dioxide/decrease in oxygen can be harmful/fatal to humans.	Any 2
7 ai	$\begin{aligned} & p V=\frac{1}{3} N m c_{\mathrm{rms}}{ }^{2}=N R T \\ & c_{\mathrm{rms}}{ }^{2}=\frac{3 R T}{m}=\frac{3 R T}{0.0399} \end{aligned}$	1 1
7 aii	Kinetic energy per mass of atom $=\frac{1}{2} c_{\mathrm{rms}}{ }^{2}=\frac{3}{2} \frac{R T}{0.0399}$ 1 argon atom $=\frac{0.0399}{6.02 \times 10^{23}} \mathrm{~kg}$ Therefore $E_{\mathrm{k}}=\frac{3}{2} \frac{8.31}{6.02 \times 10^{23}}(274-273)$ $=2 \times 10^{-23} \mathrm{~J}(1 \mathrm{~s} . \mathrm{f} .)$ This is a mean value because it uses the root mean square speed.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Oxford A Level Sciences
OCR Physics B

14 Simple models of matter
Answers to practice questions

7 b	$\begin{aligned} & c=\frac{\Delta U}{m \Delta \theta}=\frac{2 \times 10^{-23}}{\frac{0.0399}{6.02 \times 10^{23}} \times 1} \\ & =300 \mathrm{JK}^{-1}(1 \text { s.f. }) \end{aligned}$	
7 c	As the temperature rises, the volume will increase ($V \propto T$). Work has to be done to increase the volume of the gas and so more energy would be required to heat the gas with a changing volume.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
8 a	$\begin{aligned} & p V=n R T \text { hence } p_{1} V_{1}=p_{2} V_{2} \\ & \text { so } p_{2}=p_{1} \frac{V_{1}}{V_{2}}=2.0 \times 10^{5} \times 3 \\ & =6.0 \times 10^{5} \mathrm{~Pa} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
8 b	$\begin{aligned} & p V=\frac{1}{3} N m c_{\mathrm{rms}}{ }^{2}=N R T \\ & \text { so } c_{\mathrm{rms}}^{2}=\frac{3 R T}{m}=\frac{3 \times 8.31 \times 300}{0.004} \\ & =2 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}(1 \mathrm{~s} . \mathrm{f} .) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
8 c	$\begin{aligned} & c_{\mathrm{rms}}{ }^{2}=\frac{3 R T}{m} \text { So } \frac{\left.c_{\mathrm{ms}(400 K}\right)^{2}}{\left.c_{\mathrm{mss}(300 K}\right)^{2}}=\frac{\left(\frac{3 R \times 400}{m}\right)}{\left(\frac{3 R \times 300}{m}\right)}=\frac{4}{3} \\ & \text { So } \frac{c_{\mathrm{ms}(400 K)}}{c_{\mathrm{ms}}(300 \mathrm{~K})}=\sqrt{\frac{4}{3}} \end{aligned}$	1 1
9 a	Mass of $N_{2}=\frac{2.8 \times 10^{-2}}{6.02 \times 10^{23}}=5 \times 10^{-26} \mathrm{~kg}(1$ s.f. $)$	1
9 b	$\begin{aligned} & \frac{1}{2} m v^{2}=\frac{3}{2} k T \\ & \text { Thus } v=\sqrt{\frac{3 k T}{m}}=\sqrt{\frac{3 \times 1.4 \times 10^{-23} \times 300}{5 \times 10^{-26}}} \\ & =500 \mathrm{~m} \mathrm{~s}^{-1}(1 \text { s.f. }) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
9 ci	$\begin{aligned} & \text { Speed }=\frac{\text { distance }}{\text { time }}, \text { thus, time }=\frac{\text { distance }}{\text { speed }}=\frac{7.0}{500} \\ & =0.014 \approx 0.015 \mathrm{~s} \end{aligned}$	
9 cii	Relevant points can include e.g.: - Gas particles have a finite size and so collide. - Each collision changes the direction of the particle. - Each collision changes the speed of the particle. - As a result, particles do not travel in a direct line or with a constant speed.	Any 3
9 d	Relevant points can include e.g.: - The rate of diffusion will be lower. - The larger molecules collide more often/travel less far before a collision. - The distance travelled is proportional to the square root of the number of collisions. - And a shorter distance is travelled between each collision	Any 3. Award no marks if the answer states the rate of diffusion as higher.

