Oxford A Level Sciences

OCR Physics **B**

14 Simple models of matter Answers to practice questions

Question	Answer	Marks
1	A	1
2	С	1
3	$pV = nRT$ $V = \frac{nRT}{n} = \frac{3 \times 8.31 \times 300}{2.0 \times 10^5}$	1 1
	$ = 0.025 \text{ m}^3 (2 \text{ s.f.}) $	1
4 a	The pressure will increase by a factor of 4.	1
4 b	Molecules in the gas interact with each other via Van der Waal's forces, which cause a transfer of energy between molecules.	1 1
5	$\Delta U = mc\Delta T$	
	Power is the rate of change of energy with time, $\frac{\Delta U}{\Delta t}$	
	So $P = \frac{mc\Delta T}{\Delta t}$ or $\frac{\Delta T}{\Delta t} = \frac{P}{mc}$	1
	$= \frac{1500}{0.7 \times 4200} = 0.5 \mathrm{K s^{-1}}$	1
6ai	$m = \rho V = 1.2 \text{ kg m}^{-3} \times 4.2 \text{ m}^{3} = 5.04 \text{ Kg}$	1
	Number of moles = $\frac{\text{mass}}{\text{mass per mole}} = \frac{5.04 \text{ kg}}{0.029 \text{ kg mol}^{-1}}$	1
	= 170 mol (2 s.f.)	1
6 a ii	Mass of mole of carbon = mass of molecule × number of molecules in a	1
	Mass of a mole of carbon = 7.3×10^{-26} kg × 6.02×10^{23} = 0.043 kg	1
	Number of moles = $\frac{\text{mass}}{\text{mass per mole}} = \frac{1.5 \text{ kg}}{0.043\text{ kg}} = 34 \text{ moles (2 s.f.)}$	1
6 a iii	pV = nRT	1
	So $p = \frac{nRT}{N} = \frac{(173+34)\text{mol} \times 8.31\text{Jmol}^{-1}\text{K}^{-1} \times 270.15\text{K}}{120}$	1
	$V = 4.2 \text{ m}^2$	
6 b	Reasonable suggestions can include:	Any 2
	• Sudden pressure changes can be harmful/fatal to humans.	
	 Sudden temperature changes can be harmful/fatal to humans. Fire extinguisher release could cause a distraction to the driver 	
	 Increase in carbon dioxide/decrease in oxygen can be 	
7.0.1	harmful/fatal to humans.	1
7 8 1	$pV = \frac{1}{3} Nmc_{\rm rms}^2 = NRT$	
	$c_{\rm rms}^2 = \frac{3RT}{m} = \frac{3RT}{0.0399}$	1
7 a ii	Kinetic energy per mass of atom = $\frac{1}{2}c_{\text{rms}}^2 = \frac{3}{2}\frac{RT}{0.0399}$	1
	1 argon atom = $\frac{0.0399}{6.02 \times 10^{23}}$ kg	
	Therefore $E_{\rm k} = \frac{3}{2} \frac{8.31}{6.02 \times 10^{23}} (274 - 273)$	1
	$= 2 \times 10^{-23} \text{ J} (1 \text{ s.f.})$	1
	This is a mean value because it uses the root mean square speed.	1

Oxford A Level Sciences

OCR Physics B

14 Simple models of matter Answers to practice questions

7 b	$c = \frac{\Delta U}{m \Delta \theta} = \frac{2 \times 10^{-23}}{0.0399}$	1
	$\frac{1000}{6.02 \times 10^{23}} \times 1$	
7.0	= 5000 K (15.1.)	1
70	As the temperature rises, the volume will increase ($V \propto T$). Work has to be done to increase the volume of the gas	1
	and so more energy would be required to heat the gas with a changing	1
	volume.	
8 a	$pV = nRT$ hence $p_1V_1 = p_2V_2$	
	so $p_2 = p_1 \frac{V_1}{V_1} = 2.0 \times 10^5 \times 3$	1
	V_2	•
	= 6.0 × 10° Pa	1
8 b	$pV = \frac{1}{3} Nmc_{\rm rms}^2 = NRT$	
	$3RT = 3 \times 8.31 \times 300$	1
	$30 c_{\rm rms}^{\rm o} = \frac{m}{m} = \frac{0.004}{0.004}$	
	$= 2 \times 10^6 \mathrm{m s^{-1}} (1 \mathrm{s.f.})$	1
8 C	$\left(\frac{3R\times400}{2}\right)$	
	$C_{\rm rms}^2 = \frac{3RT}{5} S_0 \frac{c_{\rm rms(400K)}^2}{(m_{\rm rms}^2)^2} = \frac{(m_{\rm rms})^2}{(m_{\rm rms}^2)^2} = \frac{4}{3}$	1
	$m c_{\rm rms(300K)}^2 \left(\frac{3R \times 300}{3}\right) = 3$	
	(m)	
	$c_{\rm rms(400K)} - 4$	
	$\frac{30}{c_{\rm rms(300K)}} = \sqrt{3}$	1
9 a	28×10 ⁻²	
	Mass of $N_2 = \frac{2.0 \times 10^2}{6.02 \times 10^{23}} = 5 \times 10^{-26} \text{ kg} (1 \text{ s.f.})$	1
	0.02 ~ 10	
9 b	$\frac{1}{2}mv^2 = \frac{3}{2}kT$	
	2 2 2	
	Thus $\mu = \sqrt{3kT} = \sqrt{3 \times 1.4 \times 10^{-23} \times 300}$	1
	$\sqrt{m} = \sqrt{-10^{-26}}$	
	$= 500 \mathrm{m s^{-1}} (1 \mathrm{s.f.})$	1
9ci	Speed = $\frac{\text{distance}}{1}$, thus, time = $\frac{\text{distance}}{1}$ = $\frac{7.0}{1}$	1
	time speed 500	1
	$= 0.014 \approx 0.015 \mathrm{s}$	1
9 c ii	Relevant points can include e.g.:	Any 3
	Gas particles have a finite size and so collide.	
	Each collision changes the direction of the particle.	
	 Each consistent changes the speed of the particle. As a result, particles do not travel in a direct line or with a constant. 	
	speed.	
9 d	Relevant points can include e.g.:	Any 3.
	• The rate of diffusion will be lower.	Award no
	The larger molecules collide more often/travel less far before a applicable.	marks if the
	• The distance travelled is proportional to the square root of the	the rate of
	number of collisions.	diffusion as
	And a shorter distance is travelled between each collision	higher.