Oxford A Level Sciences
OCR Physics B

15 The Boltzmann factor Answers to practice questions

Question	Answer	Marks
1	B	1
2	C	1
3 a	$k T$ represents an approximation for the mean particle energy.	1
3 b	E is much larger than $k T$ at room temperature, giving a low chance of particles escaping the surface of the solid aluminium.	1
4 a	$\begin{aligned} & E_{k} \approx k T=1.4 \times 10^{-23} \times 10000 \\ & =1.4 \times 10^{-19} \approx 1.6 \times 10^{-19} \mathrm{~J} \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
4 b	(Real gases are not ideal therefore) particles collide and energy is exchanged. So particles will possess a range of energies.	$\begin{array}{\|l} \hline 1 \\ 1 \\ \hline \end{array}$
5 a	$\begin{aligned} & N_{2}=\mathrm{e}^{-\Delta E k I} \text { where } \Delta E=E_{2}-E_{1} \\ & N_{2}=\mathrm{N}^{\frac{-1.6 \times 10^{-18}}{} 1.4 \times 10^{-23} \times 6000}=5 \times 10^{-9} \mathrm{~N} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
5 b	The energy difference between E_{3} and E_{2} is different to the energy level between E_{2} and E_{1}. The equation $\frac{N_{3}}{N_{2}}=\frac{N_{2}}{N_{1}}$ would only work if the difference between energy levels were the same.	1
6 ai	$\begin{aligned} & \text { Energy required to evaporate } 1 \text { molecule }= \\ & \frac{\text { energy requiredto evaporate } 1 \mathrm{~kg}}{\text { numberof moleculesin1 } \mathrm{kg}}=\frac{E}{\frac{\text { mass }}{\text { molarmass }} \times N_{\mathrm{A}}} \\ & =\frac{8.4 \times 10^{5}}{\frac{1000}{46} \times 6.02 \times 10^{23}} \\ & =6.4 \times 10^{-20} \mathrm{~J}(1 \text { s.f. }) \end{aligned}$	1
6 aii	$\begin{aligned} & E \approx k T=1.4 \times 10^{-23} \times 310 \\ & =4.34 \times 10^{-21} \mathrm{~J} \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
6 a iii	$\begin{aligned} & \mathrm{e}^{-\Delta E K I} \\ & =\mathrm{e}^{-\frac{6.4 \times 11^{-20} \times 310}{1.4 \times 11^{-23}}} \\ & =3.94 \times 10^{-7} \approx 3 \times 10^{-7} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$
6 b	The proportion of ethanol molecules with enough energy to evaporate is greater than for water. Therefore ethanol will evaporate from the skin faster than water and carry away energy at a higher rate.	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \\ \hline 1 \\ \hline \end{array}$
7 a	$E \approx k T \times 1.4 \times 10^{-23} \times 300=4.2 \times 20^{-21} \mathrm{~J}$	1
7 b	Potential energy $=m g h=4.6 \times 10^{-26} \times 3000 \times 9.8=1.4 \times 10^{-21} \mathrm{~J}$	1
7 c	$\begin{aligned} & \text { Boltzmann factor }=\mathrm{e}^{-E k T}=\mathrm{e}^{-\frac{1.4 \times 11^{-21}}{1.4 \times 10^{-23} \times 300}} \\ & =0.71 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
7 di	Boltzmann factor $=\mathrm{e}^{- \text {mghk }}$ As h increases above sea level, the probability, according to the Boltzmann probability, that a particle will have the potential energy above ground level energy to occupy that height decreases.	$\begin{array}{l\|} \hline 1 \\ 1 \\ \hline \end{array}$

Oxford A Level Sciences
OCR Physics B

15 The Boltzmann factor Answers to practice questions

7 dii	Any sensible suggestion, e.g.: - Calculate the ratio of density for a number of equally-spaced height intervals above sea level. - If the ratio in each case is roughly the same then... - The decrease is exponential.	1 1 1
7 e	The Boltzmann factor is given by $\mathrm{e}^{-E k T}$. As T increases, the value of $\frac{E}{k T}$ decreases and so the value of the Boltzmann factor increases.	1 1
8 a	As gas molecules collide with the walls of a container they change velocity. There is a corresponding change in momentum that requires an impulse or force. This force acting over an area of the container results in pressure within the container.	1 1 1
8 b	$\begin{aligned} & E \approx k T=1.4 \times 10^{-23} \times 288 \\ & =4.032 \times 10^{-21} \mathrm{~J}=4 \times 10^{-21} \mathrm{~J}(1 \text { s.f. }) \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
8 c	$\begin{aligned} & \mathrm{e}^{-E / k T}=\mathrm{e}^{-\frac{3.4 \times 10^{-20}}{1.4 \times 10^{-23} \times 288}} \\ & =2.17 \times 10^{-4} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
8 di	As T increases, the Boltzmann factor increases exponentially.	1
8 dii	$\begin{aligned} & \text { Factor of increase }=\frac{\text { Boltzmannfactor }(360 \mathrm{~K})}{\text { Boltzmannfactor }(300 \mathrm{~K})}=\frac{12.5}{2.5} \\ & =5 \end{aligned}$	1 1

