Oxford A Level Sciences

**OCR** Physics **B** 

## 17 The electric field Answers to practice questions

| Question | Answer                                                                                                    | Marks  |
|----------|-----------------------------------------------------------------------------------------------------------|--------|
| 1        | D                                                                                                         | 1      |
| 2        | В                                                                                                         | 1      |
| 3 a      | $F = qVB = 1.6 \times 10^{-19} \times 250 \times 0.018 = 7.2 \times 10^{-19} N$                           | 1      |
| 3 b      | $F = \frac{mv^2}{r}$ so $r = \frac{mv^2}{F} = \frac{5.3 \times 10^{-26} \times 250}{7.2 \times 10^{-19}}$ | 1      |
|          | $= 4.6 \times 10^{-3} \mathrm{m}$                                                                         | 1      |
| 4 a      | The equipotential lines are closest together.                                                             | 1      |
| 4 b      | Straight line drawn with an arrow(head) pointing directly away from the charge.                           | 1<br>1 |
| 5 a      | Number of electrons = $\frac{0.80 \times 10^{-9}}{2}$                                                     | 1      |
|          | $= 5 \times 10^{9}$                                                                                       | 1      |
| 5 b i    | Positive charge due to repulsion of positive droplets (or similar).                                       | 1      |
| 5 b ii   | Three straight lines                                                                                      | 1      |
|          | with arrowheads pointing left.                                                                            | 1      |
| 5 c i    | $F = EQ$ and $E = \frac{V}{d}$                                                                            | 1      |
|          | So $F = \frac{VQ}{d}$ so $V = \frac{Fd}{Q}$                                                               | 1      |
| 5 c ii   | $V = \frac{Fd}{Q} = \frac{3.6 \times 10^{-6} \times 150 \times 10^{-3}}{0.8 \times 10^{-9}}$              | 1      |
|          | = 675 V                                                                                                   | 1      |
| 6ai      | Straight, vertical line correctly labelled two thirds of the distance from the cathode to the anode.      | 1      |
| 6 a ii   | $W = VQ = 600 \times 1.6 \times 10^{-19}$                                                                 | 1      |
| 6 b i    | $= 9.6 \times 10$ J $\approx 1 \times 10$ J<br>5 straight, horizontal lines.                              | 1      |
|          | All equally spaced.                                                                                       | 1      |
| 6 b ii   | 500 V                                                                                                     | 1      |
| 6 b iii  | $E = \frac{V}{I} = \frac{500}{10}$                                                                        | 1      |
|          | $a = 12500 \text{ V m}^{-1}$                                                                              | 2      |
| 7 a      | $E_{\rm k} = \frac{1}{2} m v^2 = \frac{1}{2} \times 9.1 \times 10^{-31} \times (1.8 \times 10^7)^2$       | 1      |
|          | $= 1.4 \times 10^{-16} \text{ J}^2$                                                                       | 1      |
|          | $E = VQ$ so $V = \frac{E}{Q} = \frac{1.4 \times 10^{-16}}{1.6 \times 10^{-19}}$                           | 1      |
|          | = 875 V ≈ 900 V                                                                                           | 1      |
| 7 b i    | Centripetal force = $\frac{mv^2}{r}$ and magnetic force = $QvB$ (here $Q = e$ )                           |        |
|          | So $\frac{mv^2}{r} = QvB$ and $r = \frac{mv}{Be}$                                                         | 1      |



**OCR** Physics B

## 17 The electric field Answers to practice questions

| 7 b ii | $E_{\rm k} = \frac{1}{2} m v^2 \text{ so } v = \sqrt{\frac{2E_{\rm k}}{m}}$             | 1 |
|--------|-----------------------------------------------------------------------------------------|---|
|        | $r = \frac{m\nu}{Be} = \frac{m\sqrt{\frac{2E_{k}}{m}}}{Be} = \frac{\sqrt{2E_{k}m}}{Be}$ | 1 |