Oxford A Level Sciences

OCR Physics **B**

18 Looking inside the atom Answers to practice questions

Question	Answer	Marks
1 a	В	1
1 b	В	1
1 c	D	1
1 d	D	1
2 a	$\gamma = \frac{1}{\sqrt{1 - 0.5^2}}$	1
2 b	$Momentum = \gamma mv = 1.15 \times 9.11 \times 10^{-31} \times 1.5 \times 10^{8}$ $= 1.6 \times 10^{-22} \text{ kg m s}^{-1}$	1 1 1
3	$\gamma = 2 = \frac{\text{totalenergy}}{\text{rest energy}} = 1 + \frac{\text{kineticenergy}}{\text{rest energy}}$ Kinetic energy = 0.51 MeV. Therefore p.d. = 0.51 MV	1
4	$\lambda = \frac{h}{\sqrt{2me}}$ $= 1.2 \times 10^{-13}$	1
5 a	$r = \frac{9 \times 10^9 \times 1.6 \times 10^{-19} \times 2 \times 1.6 \times 10^{-19} \times 92}{5.4 \times 10^6 \times 1.6 \times 10^{-19}}$ = 4.9 × 10 ⁻¹⁴ m	1
5 b	No change as proton number is the same.	1
6 a	$\gamma = \frac{\text{totalenergy}}{\text{rest energy}} = 1 + \frac{7 \times 10^{12}}{9.6 \times 10^8}$	1
6 b	Speed of proton = $2.99 \times 10^8 \text{ m s}^{-1}$ This is very close to the speed of light—indeed it is equal to the speed of light to eight significant figures.	1 1 1
7	Energy released = Δmc^2 = (1.6749 - 1.6726 - 0.0009) × 10 ⁻²⁷ × 9.0 × 10 ⁸ = 1.26 × 10 ⁻¹³ J	1
8	$\frac{r_{\rm h}}{\sqrt[3]{4}} = \frac{r_u}{\sqrt[3]{238}}$ $r_{\rm u} = 7.4 \times 10^{-15} \rm{m}$	1
9 a	Diagram showing six possible transitions.	1
9 b	Lowest frequency equates to photon energy of 0.6 eV Frequency = $1.4(5) \times 10^{-14}$ Hz	1
9 c	Highest frequency equates to photon energy of 12.7 eV Frequency = 3.1×10^{15} Hz	1
9 d	The free electron raises the hydrogen atom from the ground state to an energy of -3.4 eV . The free electron transers 10.2 eV to the atom $11.5 \text{ eV}-10.2 \text{ eV} = 1.3 \text{ eV}$	1
10 a	$\frac{h^2}{m^2 v^2} = \lambda^2 \therefore m^2 v^2 = \frac{h^2}{\lambda^2}$ worked through to required equation	1
10 b	$n = 2: \lambda = 2 \times 10^{-10} \text{ m}$ energy = 6 × 10 ⁻¹⁸ J $n = 3: \lambda = 1.3 \times 10^{-10} \text{ m}$ energy = 1.4 × 10 ⁻¹⁷ J	1 1 1 1

Oxford A Level Sciences

OCR Physics B

18 Looking inside the atom Answers to practice questions

10 c	The kinetic energy of the electron is of lower magnitude	1
	than its negative potential energy so its total energy is negative.	1
11 a i	$7 \times 10^4 \times 9.2 \times 10^8$	
	$N = \frac{1}{1}$	1
	$= 9.3 \times 10^{13}$	1
11 a ii	Minimum figure as it assumes all beta particles released are accounted	1
	for.	
11 b i	0.11 to 0.12 MeV	1
11 b ii	(Graph shows that) beta particles have a range of energies.	1
	Energy is conserved in the emission process	1
	so remaining energy taken away by other particles.	1
11 c	0.511+0.45	
	$\gamma =$	1
	= 1.88	
	1	1
	1.88 =	
	$1 - \frac{V^2}{2}$	1
	$V c^2$	
	$v = 2.54 \times 10^8 \mathrm{m s^{-1}}$	1
12 a i	Greater proportion deflected	1
	as there is a greater chance of close approach to the nucleus.	1
12 a ii	Smaller proportion deflected	1
	as less time spent near nuclei.	1
12 b i	5 MeV	1
12 b ii	$8 \times 10^{-13} \text{ J}$	1
12 b iii	$2 \times 79 \times 1.6 \times 10^{-19} \times 9 \times 10^{9}$	
	$r = \frac{2 \times 13 \times 10^{-13} \times 3 \times 10^{-13}}{2 \times 10^{-13}}$	1
	8×10 ¹⁰	
	$= 4.55 \times 10^{-1} \text{ m}$	1
12 c	ratio of volumes = $(6 \times 10^{-5})^3$	1
	$= 2.16 \times 10^{-13}$	
	1.9×10^4 $0 \times 10^{16} \mathrm{km}^{-3}$	
	density = $1000000000000000000000000000000000000$	1
	Assumption: e.g. all mass in nucleus or no volume between gold atoms.	1