Oxford A Level Sciences
OCR Physics B

18 Looking inside the atom
 Answers to practice questions

Question	Answer	Marks
1 a	B	1
1 b	B	1
1 c	D	1
1 d	D	1
2 a	$\begin{aligned} & Y=\frac{1}{\sqrt{1-0.5^{2}}} \\ & =1.15 \ldots=1.2 \text { (2 s.f. }) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
2 b	$\begin{aligned} & \text { Momentum }=\gamma m v=1.15 \ldots \times 9.11 \times 10^{-31} \times 1.5 \times 10^{8} \\ & =1.6 \times 10^{-22} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{array}{\|l} \hline 1 \\ 1 \\ \hline \end{array}$
3	$\begin{aligned} & Y=2=\frac{\text { totalenergy }}{\text { rest energy }}=1+\frac{\text { kneticenergy }}{\text { rest energy }} \\ & \text { Kinetic energy }=0.51 \mathrm{MeV} \text {. Therefore } \mathrm{p} \text {.d. }=0.51 \mathrm{MV} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
4	$\begin{aligned} & \lambda=\frac{h}{\sqrt{2 m e}} \\ & =1.2 \times 10^{-13} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
5 a	$\begin{aligned} & r=\frac{9 \times 10^{9} \times 1.6 \times 10^{-19} \times 2 \times 1.6 \times 10^{-19} \times 92}{5.4 \times 10^{6} \times 1.6 \times 10^{-19}} \\ & =4.9 \times 10^{-14} \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
5 b	No change as proton number is the same.	1
6 a	$\begin{aligned} & y=\frac{\text { totalenergy }}{\text { rest energy }}=1+\frac{7 \times 10^{12}}{9.6 \times 10^{8}} \\ & 7300 \text { (2 s.f.) } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
6 b	Speed of proton $=2.99 \ldots \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ This is very close to the speed of light-indeed it is equal to the speed of light to eight significant figures.	$\begin{aligned} & 1 \\ & \hline 1 \\ & 1 \end{aligned}$
7	$\begin{aligned} & \text { Energy released }=\Delta m c^{2}=(1.6749-1.6726-0.0009) \times 10^{-22} \times 9.0 \times 10^{8} \\ & =1.26 \times 10^{-13} \mathrm{~J} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$
8	$\begin{aligned} & \frac{r_{h}}{\sqrt[3]{4}}=\frac{r_{u}}{\sqrt[3]{238}} \\ & r_{u}=7.4 \times 10^{-15} \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
9 a	Diagram showing six possible transitions.	1
9 b	Lowest frequency equates to photon energy of 0.6 eV Frequency $=1.4(5) \times 10^{-14} \mathrm{~Hz}$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
9 c	Highest frequency equates to photon energy of 12.7 eV Frequency $=3.1 \times 10^{15} \mathrm{~Hz}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$
9 d	The free electron raises the hydrogen atom from the ground state to an energy of -3.4 eV . The free electron transers 10.2 eV to the atom $11.5 \mathrm{eV}-10.2 \mathrm{eV}=1.3 \mathrm{eV}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
10 a	$\frac{h^{2}}{m^{2} v^{2}}=\lambda^{2} \therefore m^{2} v^{2}=\frac{h^{2}}{\lambda^{2}}$ worked through to required equation	1
10 b	$\begin{aligned} & n=2: \lambda=2 \times 10^{-10} \mathrm{~m} \\ & \text { energy }=6 \times 10^{-18} \mathrm{~J} \\ & n=3: \lambda=1.3 \times 10^{-10} \mathrm{~m} \\ & \text { energy }=1.4 \times 10^{-17} \mathrm{~J} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$

Oxford A Level Sciences
OCR Physics B

18 Looking inside the atom
 Answers to practice questions

10 c	The kinetic energy of the electron is of lower magnitude than its negative potential energy so its total energy is negative.	1
11 ai	$\begin{aligned} & N=\frac{7 \times 10^{4} \times 9.2 \times 10^{8}}{\ln 2} \\ & =9.3 \times 10^{13} \end{aligned}$	1 1
11 a ii	Minimum figure as it assumes all beta particles released are accounted for.	1
11 bi	0.11 to 0.12 MeV	1
11 b ii	(Graph shows that) beta particles have a range of energies. Energy is conserved in the emission process so remaining energy taken away by other particles.	1 1 1
11 c	$\begin{aligned} & Y=\frac{0.511+0.45}{0.511} \\ & =1.88 \\ & 1.88=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\ & v=2.54 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	1 1 1
12 ai	Greater proportion deflected as there is a greater chance of close approach to the nucleus.	1
12 a ii	Smaller proportion deflected as less time spent near nuclei.	1
12 bi	5 MeV	1
12 bii	$8 \times 10^{-13} \mathrm{~J}$	1
12 b iii	$\begin{aligned} & r=\frac{2 \times 79 \times 1.6 \times 10^{-19} \times 9 \times 10^{9}}{8 \times 10^{-13}} \\ & =4.55 \times 10^{-14} \mathrm{~m} \end{aligned}$	1 1
12 c	$\begin{aligned} & \text { ratio of volumes }=\left(6 \times 10^{-5}\right)^{3} \\ & =2.16 \times 10^{-13} \\ & \text { density }=\frac{1.9 \times 10^{4}}{2.16 \times 10^{-3}}=9 \times 10^{16} \mathrm{~kg} \mathrm{~m}^{-3} \end{aligned}$ Assumption: e.g. all mass in nucleus or no volume between gold atoms.	1

