Oxford A Level Sciences OCR Physics B

Question	Answer	Marks
Section A		
1 a	C	
1 b	B	
1 c	A	
2	A	
3	D	
4	B	
5 a	A	
5 b	C	
6	D	
7	B	
8	D	
9	C	
10	B	
11	D	
12	D	
13 a	C	
13 b	D	
13 c	D	
14	A	
15	B	
16	C	
17	C	
18	D	
19	B	
20	D	
21	A	
22	B	
23	D	
24	D	
Section B		
25 a	$\begin{aligned} & F=\frac{-G \times 2.5 \times 2.5}{2.0^{2}} \\ & =1(.04) \times 10^{-10} \mathrm{~N} \end{aligned}$	

Oxford A Level Sciences
OCR Physics B

25 b	work done in removing masses from a separation of 2.0 m to infinity $\begin{aligned} & =\frac{-G \times 2.5 \times 2.5}{2.0} \\ & =2.1 \times 10^{-10} \mathrm{~J} \end{aligned}$	1
26 a	$\begin{aligned} & Q=2200 \times 10^{-6} \times 15 \\ & =0.033 \mathrm{C} \end{aligned}$	1 1 1
26 b	$\begin{aligned} & E=\frac{1}{2} \times 2200 \times 10^{-6} \times 15^{2} \\ & =0.25 \mathrm{~J} \end{aligned}$	1
27	$\begin{aligned} & 3.0=6.0 \times \mathrm{e}^{-\theta(t / 4000 \times 0.00047)} \\ & 0.5=\mathrm{e}^{-t(l)(4000 \times 0.00047)} \\ & \ln 0.5=-t(4000 \times 0.0047) \\ & t=0.693 \times 4000 \times 0.00047 \\ & =1.3 \mathrm{~s} \end{aligned}$	1 1
28	Accept answers where two initial activities are stated (e.g. 100 Bq \& 200 Bq) and activities after 6.6 years are calculated and shown to be approximately equal. $\begin{aligned} & \text { Or: } 2 A_{0} \mathrm{e}^{-t \operatorname{tn} 215.3}=A_{0} \mathrm{e}^{-t \ln 2 / 28} \\ & \operatorname{In} 2-\frac{\ln 2}{5.3} t=-\frac{\ln 2}{28} t \\ & 1=t\left(\frac{1}{5.3}-\frac{1}{28}\right) \\ & t=6.5 \text { years } \end{aligned}$	1 1 1 1
29 a	$\begin{aligned} & k=\frac{4 \pi^{2} m}{T^{2}}=\frac{4 \pi^{2} \times 0.1 \mathrm{~kg}}{0.25 \mathrm{~s}^{2}} \\ & =15.8 \mathrm{Nm}^{-1} \end{aligned}$	1
29 b	$\begin{aligned} & a=\frac{-k x}{m}=\frac{-15.8 \times 0.05}{0.1} \\ & =7.9 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	1 1
30	$\begin{aligned} & \frac{G M_{\mathrm{E}}}{r_{\mathrm{E}}^{2}}=\frac{G M_{\mathrm{m}}}{r_{\mathrm{m}}^{2}} \text { (subscript } E \text { represents Earth, } m \text { represents Moon) } \\ & r_{\mathrm{E}}=r_{\mathrm{m}} \sqrt{\frac{M_{\mathrm{E}}}{M_{\mathrm{m}}}} \\ & r_{\mathrm{E}}=8.99 r_{\mathrm{m}} \\ & \text { so } r_{\mathrm{E}}+r_{\mathrm{m}}=3.8 \times 10^{8} \mathrm{~m} \text { so } 10 r_{\mathrm{E}}=3.8 \times 10^{8} \mathrm{~m} \\ & r_{\mathrm{E}}=3.8 \times 10^{7} \mathrm{~m} \end{aligned}$	1 1 1
31 a	$\begin{aligned} & p V=n R T \text { therefore } V=\frac{n R T}{P}=\frac{2.5 \times 8.3 \times 290}{8.8 \times 10^{5}} \\ & V=6.8 \times 10^{-3} \mathrm{~m}^{3} \end{aligned}$	1
31 b	$\begin{aligned} & P=\frac{1}{3} \rho c_{\mathrm{rms}}{ }^{2} \\ & c_{\mathrm{rms}}=\sqrt{\frac{3 P}{\rho}}=\sqrt{\frac{3 \times 8.8 \times 10^{5}}{\left(\frac{28 \times 2.5 \times 10^{-3}}{6.8 \times 10^{-3}}\right)}} \end{aligned}$ $506 \mathrm{~m} \mathrm{~s}^{-1}$	1
32 a	$\begin{aligned} & f=\mathrm{e}^{\left(E_{2}-E_{1}\right) / k T}=\mathrm{e}^{\left(6.9 \times 10^{-20}-3.9 \times 10^{-21}\right)\left(1.4 \times 10^{-23} \times 283\right)} \\ & =7.8 \times 10^{-8} \end{aligned}$	1 1

Oxford A Level Sciences
Paper 1 Practice questions (A Level)
OCR Physics B

32 b	$\begin{aligned} & 2.9 \times 10^{-8}=\mathrm{e}^{-4650 / T} \text { therefore } T=\frac{-4650}{\ln \left(2.9 \times 10^{-8}\right)} \\ & =267.9 \mathrm{~K} \end{aligned}$	1 1
33 a	$\begin{aligned} & \text { e.m.f. }=\frac{\Delta \Phi}{\Delta t} \\ & \approx 40 \mathrm{~V} \end{aligned}$	1 1
33 b	The maximum e.m.f. would double and the time period of oscillation would halve.	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
34 a	$\begin{aligned} & Y=1+\frac{0.0012}{0.51} \\ & =1.002 \\ & \text { This is very near unity, hence relativistic effects unimportant. } \end{aligned}$	1 1 1
34 b	$\begin{aligned} & \lambda=\frac{h}{\sqrt{2 E m}} \\ & =\frac{6.6 \times 10^{-34}}{\sqrt{2 \times 1200 \times 1.6 \times 10^{-19} \times 1.9 \times 10^{-31}}} \\ & =3.5 \times 10^{-11} \mathrm{~m} \end{aligned}$	1 1 1
35	Any three statements from: - Changing magnetic field/flux in copper tube. - Currents produced in copper tube. - Currents set up their own magnetic fields/flux. - (providing) an upwards force on magnet/force against the weight of the magnet. - Change in net force leads to reduced acceleration/reduced relative motion between tube and magnet.	3
36 a	Force acting on alpha particle is the greatest at the smallest separation.	1
36 b	The alpha particle would be deflected more as it is acted upon by the force from the nucleus for a longer time.	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
Section C		
37 a	Use of area under graph to gain answer in region of 40 mC . Any method of estimating area acceptable.	3
37 b	$\begin{aligned} & C=\frac{Q}{V}=\frac{40 \times 10^{-3}}{9.0} \\ & =4400 \mu \mathrm{~F} \end{aligned}$	1 1
37 c	$\begin{aligned} & R C=41 \times 4400 \times 10^{-6}=0.18 \ldots \mathrm{~s} \\ & 5 R C=0.9 \mathrm{~s} \end{aligned}$ Refer to the graph to show that the current is approaching zero at this time, showing that capacitor is nearly fully discharged (calculated value of charge at $0.9 \mathrm{~s}=0.27 \mathrm{mC}$)	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
37 d	$\begin{aligned} & E=\frac{1}{2} Q V=0.5 \times 40 \times 10^{-3} \times 9.0 \\ & =180 \mathrm{~mJ} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
37 e	$\begin{aligned} & \Delta \theta=\frac{180 \times 10^{-3}}{6 \times 10^{-4} \times 420} \\ & =0.7^{\circ} \mathrm{C} \end{aligned}$	1
38 a	Wavelength of radiation emitted from galaxies increases. this is shown in a shift of the spectral lines to longer wavelengths.	$\begin{array}{\|l} \hline 1 \\ 1 \\ \hline \end{array}$
38 b	$\begin{aligned} & \text { gradient, e.g. } \frac{35 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}}{2 \times 10^{9} \mathrm{I} . \mathrm{y} .} \\ & =0.0175 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{I} . \mathrm{y} .{ }^{-1} \end{aligned}$	1 2

Oxford A Level Sciences

OCR Physics B

Paper 1 Practice questions (A Level) Answers

38 c	The answer can include the following points: Description/explanation of cosmological redshift: - More distant galaxies recede more quickly - whichever direction the observation is made. - This shows (nearly all) galaxies are moving away from each other. - Some observed redshifts cannot be explained by galaxies moving through space. - As light travels from distant galaxies it is stretched as space expands. - The greater the distance, the greater the time of travel, the greater the expansion of space and hence the greater the redshift. - Shows that earlier in time the Universe was smaller. Cosmic microwave background radiation: - Produced when Universe first became cool enough for neutral atoms to form. - Photons travelling from that time will have experienced great cosmological redshifts. - Background radiation nearly uniform. - Near-uniformity shows that the Universe was uniform in its early history. - Small anisotropy (non-uniformity) is observed. - CMBR gives evidence that the Universe was in a hot dense state early in its history.	6
39 a	Iron is a magnetic material. therefore electrostatic forces can be induced or exerted when a current flows through the coil (or similar answer).	1
39 b	Using thin sheets (laminations) prevents eddy currents in the core that generate an electric field and therefore affect the motion of the magnetic coils.	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
39 c	Any sensible suggestions, e.g.: - Increase the number of turns on the (rotor) coil to generate a greater magnetic force for a given current. - Increase the diameter of the (rotor) coil to increase the magnetic flux linkage through the coil (and hence the force). - Use a different rotor core (with greater magnetic permeability) to increase the force for a given magnetic flux linkage.	Maximum 4 marks (2 for modifications and 2 for explanations)

