Paper 1 Practice questions (A Level) Answers

OCR Physics B

Question	Answer	Marks
Section A		
1 a	С	
1 b	В	
1 c	A	
2	A	
3	D	
4	В	
5 a	A	
5 b	С	
6	D	
7	В	
8	D	
9	С	
10	В	
11	D	
12	D	
13 a	С	
13 b	D	
13 c	D	
14	A	
15	В	
16	С	
17	С	
18	D	
19	В	
20	D	
21	A	
22	В	
23	D	
24	D	
Section B		
25 a	$F = \frac{-G \times 2.5 \times 2.5}{2}$	1
	$F = \frac{-G \times 2.5 \times 2.5}{2.0^2}$ =1(.04) × 10 ⁻¹⁰ N	1
		<u> </u>

OCR Physics B

Paper 1 Practice questions (A Level) Answers

25 b	work done in removing masses from a separation of 2.0 m to infinity	
	$= \frac{-G \times 2.5 \times 2.5}{2.5}$	1
	2.0	
	$= 2.1 \times 10^{-10} \text{ J}$	1
26 a	$Q = 2200 \times 10^{-6} \times 15$	1
	= 0.033 C	1
26 b	-1 0000 40 ⁻⁶ 45 ²	1
	$E = \frac{1}{2} \times 2200 \times 10^{-6} \times 15^{2}$	
	= 0.25 J	1
27	= 0.25 J 3.0 = 6.0 × e ^{-t/(4000 × 0.00047)} 0.5 = e ^{-t/(4000 × 0.00047)}	
	$0.5 = e^{-t/(4000 \times 0.00047)}$	
	$\ln 0.5 = -t^{t(4000 \times 0.00047)}$	1
	$t = 0.693 \times 4000 \times 0.00047$	1
	= 1.3 s	1
28	Accept answers where two initial activities are stated (e.g. 100 Bq &	
	200 Bq) and activities after 6.6 years are calculated and shown to be	
	approximately equal. Or: $2A_0e^{-t \ln 2/5.3} = A_0e^{-t \ln 2/28}$	
	Or: $2A_0e^{-t\ln 2/5.3} = A_0e^{-t\ln 2/28}$	1
	$\ln 2 - \frac{\ln 2}{t} t - \frac{\ln 2}{t} t$	
	$\ln 2 - \frac{\ln 2}{5.3} t = -\frac{\ln 2}{28} t$	1
	$(1 \ 1)$	
	$1 = t \left(\frac{1}{5.3} - \frac{1}{28} \right)$	1
	<i>t</i> = 6.5 years	1
29 a	$k = \frac{4\pi^2 m}{T^2} = \frac{4\pi^2 \times 0.1 \text{ kg}}{0.25 \text{ s}^2}$	4
	$r = \frac{T^2}{T^2} = \frac{0.25s^2}{0.25s^2}$	1
	$= 15.8 \mathrm{N m^{-1}}$	1
29 b	ky 15.8 × 0.05	1
20 0	$a = \frac{-kx}{m} = \frac{-15.8 \times 0.05}{0.1}$	1
	$= 7.9 \mathrm{m s^{-2}}$	1
30		
30	$\frac{GM_{\rm E}}{r_{\rm E}^2} = \frac{GM_{\rm m}}{r_{\rm m}^2}$ (subscript <i>E</i> represents Earth, <i>m</i> represents Moon)	
	$r_{\rm E}^{\rm z}$ $r_{\rm m}^{\rm z}$	
	$r_{\rm E} = r_{\rm m} \sqrt{\frac{M_{\rm E}}{M_{\rm m}}}$	
	$r_{\rm E} = r_{\rm m} \sqrt{\frac{m_{\rm E}}{r_{\rm m}}}$	1
		•
	$r_{\rm E} = 8.99 r_{\rm m}$	1
	so $r_{\rm E} + r_{\rm m} = 3.8 \times 10^8 \mathrm{m}$ so $10r_{\rm E} = 3.8 \times 10^8 \mathrm{m}$	
	$r_{\rm E} = 3.8 \times 10^7 {\rm m}$	1
31 a	$nRT 2.5 \times 8.3 \times 290$	1
	$pV = nRT$ therefore $V = \frac{nRT}{P} = \frac{2.5 \times 8.3 \times 290}{8.8 \times 10^5}$	
	$V = 6.8 \times 10^{-3} \mathrm{m}^3$	1
31 b		
	$P = \frac{1}{3}\rho c_{\rm rms}^2$	
	5	
	$C_{\rm rms} = \sqrt{\frac{3P}{\rho}} = \sqrt{\frac{3 \times 8.8 \times 10^5}{\left(\frac{28 \times 2.5 \times 10^{-3}}{6.8 \times 10^{-3}}\right)}}$	
	$G_{\rm rms} = \sqrt{\rho} = \frac{1}{(28 \times 25 \times 10^{-3})}$	1
	$\left\ \frac{20 \times 2.0 \times 10}{0.0 \times 10^{-3}} \right\ $	
	$506 \mathrm{m s^{-1}}$	1
32 a	$f = \mathbf{e}^{(E_2 - E_1)/kT} = \mathbf{e}^{(6.9 \times 10^{-20} - 3.9 \times 10^{-21})/(1.4 \times 10^{-23} \times 283)}$	1
	$7 = e^{-1}$ $= e^{-1}$ $= e^{-1}$ $= e^{-1}$	1
	$ = 1.0 \times 10$	

OCR Physics B

Paper 1 Practice questions (A Level) Answers

32 b	$2.9 \times 10^{-8} = e^{-4650/T}$ therefore $T = \frac{-4650}{\ln(2.9 \times 10^{-8})}$	1
	= 267.9 K	1
33 a	$\Lambda \Phi$	
	e.m.f. = $\frac{\Delta \Phi}{\Delta t}$	1
	$\approx 40 \text{ V}$	1
33 b	The maximum e.m.f. would double	1
	and the time period of oscillation would halve.	1
34 a	$\gamma = 1 + \frac{0.0012}{0.51}$	1
		1
	= 1.002 This is very near unity, hence relativistic effects unimportant.	1
34 b		
54.0	$\lambda = \frac{h}{\sqrt{2Em}}$	1
		•
	_ 6.6×10 ⁻³⁴	
	$=\frac{6.6\times10^{-34}}{\sqrt{2\times1200\times1.6\times10^{-19}\times1.9\times10^{-31}}}$	1
	$= 3.5 \times 10^{-11} \mathrm{m}$	
		1
35	Any three statements from:	3
	Changing magnetic field/flux in copper tube.	
	Currents produced in copper tube.	
	• Currents set up their own magnetic fields/flux.	
	• (providing) an upwards force on magnet/force against the weight of the	
	 magnet. Change in net force leads to reduced acceleration/reduced relative 	
	motion between tube and magnet.	
36 a	Force acting on alpha particle is the greatest at the smallest separation.	1
36 b	The alpha particle would be deflected more	1
	as it is acted upon by the force from the nucleus for a longer time.	1
Section C		
37 a	Use of area under graph to gain answer in region of 40 mC. Any method of	3
	estimating area acceptable.	Ŭ.
37 b	$C = \frac{Q}{V} = \frac{40 \times 10^{-3}}{2.2}$	
	$C = \frac{q}{V} = \frac{100000}{9.0000000000000000000000000000000$	1
	= 4400 μF	_
07.0		1
37 c	$RC = 41 \times 4400 \times 10^{-6} = 0.18 \text{ s}$	
	5RC = 0.9 s Refer to the graph to show that the current is approaching zero at this	1
	time, showing that capacitor is nearly fully discharged (calculated value of	
	charge at $0.9 \text{ s} = 0.27 \text{ mC}$)	
37 d		
	$E = \frac{1}{2} QV = 0.5 \times 40 \times 10^{-3} \times 9.0$	1
	= 180 mJ	1
37 e		
-	$\Delta \theta = \frac{180 \times 10^{-3}}{6 \times 10^{-4} \times 420}$	1
	= 0.7 °C	1
38 a	Wavelength of radiation emitted from galaxies increases.	1
	this is shown in a shift of the spectral lines to longer wavelengths.	1
38 b	gradient, e.g. $\frac{35 \times 10^6 \text{ m s}^{-1}}{2 \times 10^9 \text{ l.y.}}$	
	gradient, e.g. 2×10^9 l.y.	1
	$= 0.0175 \mathrm{m s^{-1} l.y.^{-1}}$	
L	- 0.01701113 i.y.	2

Paper 1 Practice questions (A Level) Answers

OCR Physics B

38 c	The answer can include the following points:	6
	Description/explanation of cosmological redshift:	
	More distant galaxies recede more quickly – whichever direction the	
	observation is made.	
	 This shows (nearly all) galaxies are moving away from each other. Some observed redshifts cannot be explained by galaxies moving through space. 	
	• As light travels from distant galaxies it is stretched as space expands.	
	• The greater the distance, the greater the time of travel, the greater the expansion of space and hence the greater the redshift.	
	Shows that earlier in time the Universe was smaller.	
	Cosmic microwave background radiation:	
	• Produced when Universe first became cool enough for neutral atoms to form.	
	 Photons travelling from that time will have experienced great cosmological redshifts. 	
	 Background radiation nearly uniform. 	
	• Near-uniformity shows that the Universe was uniform in its early history.	
	Small anisotropy (non-uniformity) is observed.	
	• CMBR gives evidence that the Universe was in a hot dense state early in its history.	
39 a	Iron is a magnetic material.	1
	therefore electrostatic forces can be induced or exerted when a current flows through the coil (or similar answer).	1
39 b	Using thin sheets (laminations) prevents eddy currents in the core	1
	that generate an electric field	1
	and therefore affect the motion of the magnetic coils.	1
39 c	Any sensible suggestions, e.g.:	Maximum 4
	 Increase the number of turns on the (rotor) coil to generate a greater 	marks (2 for
	magnetic force for a given current.	modifications
	Increase the diameter of the (rotor) coil to increase the magnetic flux	and 2 for
	linkage through the coil (and hence the force).	explanations)
	• Use a different rotor core (with greater magnetic permeability) to increase the force for a given magnetic flux linkage.	
	I une torce tor a given magnetic nux illikage.	