m	= method mark		
S	= substitution mark		
/	= alternative and acceptable answers for the same marking point		
	= separates marking points		
NOT	= answers which are not worthy of credit		
() [−]	= words which are not essential to gain credit		
	= (underlining) key words which must be used to gain ci	redit	
ect	= error carried forward		
AVV	= alternative wording		
Ura			2
Qn	Expected Answers	Marks	Additional Guidance
1(a)	A	1	
1(b)	D	1	
2	8	1	
3	С	1	
4(a)	Amplitude = 1.5 mm ✓	1	
1			
4(b)	Frequency = 1/0.02 ✓ = 50 Hz ✓	2	If 20 s is used as period
			the answer will be 0.05 Hz.
			This is worth one mark.
5(a)	$s = 500 \times 3 \times 10^{\circ}/2 \checkmark = 7.5 \times 10^{\circ} \text{ m}$	1	
			2
5(0)	integral t		
1		2	The first mark is for
	OR doppler effect (arguments leading to $y/a =$		time interval
			ume interval.
6	$C = OV = 2.0 \times 10^{-3} / 4.5 / = 4.4 \times 10^{-4} E /$		
7	$C = Q/V = 2.0 \times 10^{-74.00} = 4.4 \times 10^{-70} F^{-7}$		<u>µг ок</u>
'		2	
	Leading to $C^2 J^{-1}$	۷	
	OR Capacitance = $Q^2/2E = C^2 = J^{-1}$		
8(a)	$-E/KT = -3 \times 10^{-20}/1$ 38 × 10 ⁻²³ × 300 / = -7.2		
	factor = $e^{-7.2} = 7.1 \times 10^{-4}$	2	
			₩.
8(b)	joules (J) OR eV ✓	1	
9	$pV/T = constant \checkmark (OR pV = nRT \checkmark) 1.0 \times 10^{5} \times$		
•	5.0/298 = P x 10.8/257 ✓ P = 4 x 10 ⁴ Pa ✓	3	
10			
(a)(i)	2.0, 1.0 ✓ 0.5, 0.25 ✓ (x 10 ¹⁰)	2	
(a)(ii)	points 🗸 line 🗸	2	
	····		
(b)(i)	$1/(4 \times 10^{-12}) \checkmark = 2.5 \times 10^{-12}$	1	
(D)(II)	$(05/000) \times 2.5 \times 10^{-1} = 2.7 \times 10^{-1} \checkmark$	1	
(III)(¤)	from graph, 3000 ± 500 years (ect from (ii) poss) √	1	
(c)(i)	relevant comment (eq no living organism no		
	calibration NO carbon etc) /	1	
(c)(ii)	relevant comment (eg low count rate) / no carbon-14	1	
(c)(iii)	too little difference (in count rate) ✓	1	

(4)

ź

11 (a)	energy required = 4200 J \checkmark no. of neutrons = 4200/3.5 x 10 ⁻¹⁶ \checkmark = 1.2 x 10 ¹⁹	2	Method must be clear
(b)	One interaction would cause only a small temp rise ✓ beyond resolution of instruments or heat loss considerations of calculation showing increase in T due to one particle or length of time to reach a measurable Temp. ✓	2	
(c)(i)	$\Delta \theta = Q/mc = 3.5 \times 10^{-16} / 8.0 \times 10^{-6} \times 7.0 \times 10^{-8} \checkmark 6.3 = 10^{-4} \kappa$	1	
(c)(ii)	a particle will be trapped very rarely because of the small mass of detector OWITE \checkmark many detectors \checkmark	2	Both points needed
12 (a)	$\Delta p = 11.0 \times (75 - 0.0 \times 75) \checkmark = 825 \text{ kg m s}^{-1} \checkmark$	· 2	
(b)	F = $\Delta p/\Delta t$ = 825/0.14 = 5890 N ✓ 5890/750 = 7.8 times body weight ✓ can use F = ma. possible ecf from (a)	2	Correct calculation of F or acceleration ✓ Comparison with weight ✓
(c)	longer time / distance (ie deceleration less) ✓ therefore force less ✓ head will not bounce ✓	2	Any 2 from 3 for 2 marks
(d)(i)	graph shows that max force is lower ✓ statement to this effect ✓	2	
(d)(ii)	graph shows same area under line \checkmark statement to this effect \checkmark	2	
13 (a)	Y and Z at same potential \checkmark therefore energy required is independent of route in moving from X (OWTTE – sensible statements) \checkmark	2	
(b)(i) (b)(ii)	change in energy = $2.8 \times 10^{6} \checkmark \times 28 \times 10^{-3} \checkmark 78000 \text{ J}$ energy per molecule = $78000/(6.0 \times 10^{23}) = 1.3 \times 10^{-19}$	2	
	$J \checkmark$ 1.3 x 10 ⁻¹⁹ = ½ m v ² = ½ 4.7 x 10 ⁻²⁶ \checkmark v ² = m ² s ⁻² \checkmark v=2352 m s ⁻¹ (OR ½ mv ² = m∆Vg ✓ v ² =(2x2.8x10 ⁶) ✓ v=(5.5 x 10 ⁶) ^{1/2} m s ⁻¹ \checkmark)	3	2352 or similar only 1 mark
(c)	n R T = 1/3 Nm c ² \checkmark for one mole n = 1, N = N _A so Nm = M _m \checkmark RT = 1/3 M _m c ² \checkmark	3	
(d)	$V_{r.m.s.} = (3 \times 8.31 \times 290 / 0.028)^{1/2} \checkmark = 510 \text{ m s}^{-1} \checkmark (2 \text{ or } 3 \text{ SF})$	2	
(e)	although mean speed lower than escape velocity ✓ molecules will gradually escape because distribution of speeds around mean / lunar temperature goes higher than 290K / Boltzmann Factor ✓	2	ecf incorrect mean speed> V _{esc} 1 mark
14 (a)	Correct test carried out ✓ supporting statement ✓	1	
(b)	Equating apparent brightness \checkmark 1500/ $(1 \times 10^{21})^2 = 200/s^2 \checkmark s = 3.7 \times 10^{20} \text{ m} \checkmark$	3	If distances are not . squared 1 mark max

Quality of written communication 4

.

2864

1(a) 1(b) 1(c)	Wb T V	1 1 1
2	$\frac{V_p}{V_s} = \frac{n_p}{n_s}$ 20	1 1
3	С	1
4	$A = \lambda N A = 5.4 \times 10^{-5} \times 6.0 \times 10^{14} = 3.2 \times 10^{10} \text{ Bq}$	1 1
5	neutron	1
6	$E = mc^{3}$ $E = 1.2 \times 10^{6} \times 1.6 \times 10^{-19} = 1.92 \times 10^{-13} \text{ J}$ ecf: $m = E/c^{2} = 1.92 \times 10^{-13} / 9 \times 10^{18} = 2.1 \times 10^{-30} \text{ kg}$	1 1 1

1.

7	alpha particle +nucleus	
	further away from nucleus on closest approach more overall deflection	1 1
8	total dose = 0.01 x 30 = 0.3Sv risk = 5 × 0.3 = 1.5%	1 1
9	В	1
10(a)	DF	1
10(b)	correct units conversion ecf incorrect units: substitution and calculation F = B/I $F = 500 \times 10^{-3} \times 420 \times 10^{-3} \times 8 \times 10^{-2}$ $F = 1.7 \times 10^{-2}$ N	1

11(a)	any of the following, maximum [2]	2
	 has a very high permeability 	
	easily magnetised (owtte)	
1	offers low reluctance path for flux	
1	 small flux in coil gives much larger flux in iron 	
	iron atoms have a magnetic moment	
11(b)	any of the following, maximum [3]	3
	iron is a conductor	
	 so emf induced as it moves through magnetic field of stator 	
	(eddy) currents in solid iron	
	heat up the rotor	
	and provide a braking force on the rotor (wtte)	
	large resistance between iron sheets	
	so (eddy) currents are small	
	minimising waste heat and braking force	
11(c)	any pair of the following suggestions and explanations	4
	decrease gap between rotor and stator	
	to increase flux density / reduce permeability of magnetic circuit	
	increase turns of wire on rotor	
	to increase force / couple on rotor	
	increase turns of wire on stator	
	to increase magnetic field on rotor coils	
	increase thickness of wire in coils	
	to reduce resistance / increase conductance	
		9

A.

12(a)(i)	V = kQ/r $r = 7.4 \times 10^{-15} + 1.9 \times 10^{-15} = 9.3 \times 10^{-15}$ ecf incorrect r: $V = 9.0 \times 10^{9} \times 1.5 \times 10^{-17} / 9.3 \times 10^{-15} = 1.45 \times 10^{7} V$	1 1	
12(a)(ii)	$E_p = qV$ ecf incorrect V: $E_p = 3.2 \times 10^{-19} \times 1.45 \times 10^7 = 4.64 \times 10^{-12} \text{ J}$	1 1	
12(b)(i)	4.6×10 ⁻¹² / 1.6×10 ⁻¹⁹ = 2.9×10 ⁷ eV = 29 MeV	1	
12(b)(ii)	any of the following reasons:	2	
	strong force between hadrons (wtte) provides attraction of alpha particle to nucleus		
	(charge distribution) nucleus is not spherical (wtte) because of electrostatic interaction with alpha particle		
	model is too simple to give correct answer (wtte) quantum ideas should be used		
	alpha particle loses energy as it leaves the <u>atom</u> (wtte) because of attraction to / collisions with electrons around nucleus	7	
1			-

ć

14(a)	$I = 50 \times 10^{16} \text{ A}$	1
	$n = lt/e = 50 \times 10^{-7} / 1.6 \times 10^{-9} = 3.13 \times 10^{8}$	1
		1
14(b)(I)	$E_0 = mc$ $F_0 = 9.11 \times 10^{-31} \times (3.0 \times 10^{8})^{2}$	
	$E_0 = 8.2 \times 10^{-14}$ J	1
	ecf incorrect E0: E0 = 8.2×10 / 1.6×10 = 5.12×10 eV (<< 8.00×10 eV)	
14(b)(ii)	$E = 800 \times 10^{6} \times 1.6 \times 10^{-19} = 1.28 \times 10^{-10} \text{ J}_{10}$	
	$p = E/c = 1.28 \times 10^{10} / 3.0 \times 10^{\circ} = 4.27 \times 10^{10} \text{ Ns}_{19} = 1.6 \times 10^{15} \text{ m}$	1
	$\beta = 6.63 \times 10^{-1} + 4.27 \times 10^{-1} = 1.6 \times 10^{-1}$	
14(b)(iii)	proton can be modelled as a sphere / plate	1
	FITHER $\lambda = b \sin \theta$ OR $\lambda \approx b$	1
	proton diameter approximately 1.6×10 ¹⁵ m (ecf)	1
14(c)	any of the following, maximum [4]	4
	proton contains quarks	
	two up (+2/3e) and one down (-1/3e) beld together by gluons	
	which come in three colours	
	which electrons can hit if they have short enough wavelength	1
	which are made from quark pairs	
		15

Quality of Written Communication 4