Qn	Expected Answers	Marks	Additional guidance
1 (a)		1	
1(b)	$B \checkmark$	1	
2	Unit of f^{2} is s^{-2} or f is s^{-1} (unit of x is m therefore) combined unit is $\mathrm{m} \mathrm{s}^{-2}$ (which is the unit of acceleration.) \square	2	
3 (a)	$M=Q / C . \Delta \theta=1.6 \times 10^{8} / 4200 \times 37 \checkmark=1030 \mathrm{~kg} \checkmark$ (1000 kg to 2 sf acceptable)	2	One mark if 310 used giving 123 kg
3(b)	e.g. lower body temperature, you just can't do it(approx twenty times body mass), too much fluid absorbed \checkmark	1	Any sensible comment
4 (a)	$70 \mathrm{~m} \mathrm{~s}^{-1 /}$	1	
4(b)	$70 \times 0.11=7.7 \checkmark \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \checkmark$ Ns e.c.f. from (a)	2	
5(a)	$\begin{aligned} & \text { Area under graph (equiv to } 1 / 2 \mathrm{QV})=1 / 2 \times 3.5 \times 10^{-3} \times 8 \checkmark \\ & =0.014 \mathrm{~J} \checkmark \end{aligned}$	2	
5(b)	Grad $=3 \times 10^{-3 / 6.8}$ (for example) $\checkmark=4.4 \times 10^{-4} \mathrm{~F} \checkmark$	2	Answers in range 4.3 to $4.6\left(\times 10^{-4}\right)$. Penalise 4 or more sf
6(a)	$\begin{aligned} & E-\mathrm{KT}=1.38 \times 10^{-23} \times 10,000 \checkmark=1.38 \times 10^{-19} \mathrm{~J} \checkmark \\ & \mathrm{If} 3 / 2 \mathrm{kT} \text { used accept } 2.1 \times 10^{-19} \mathrm{~J} \end{aligned}$	2	Need to give own value of answer
6 (b)	Collision between atoms \checkmark distribution or transfer of energy (speed) \checkmark or more sophisticated answers linked to statistical arguments.	2	
7	First line of table: $2.4 \times 10^{-3}, 4.8 \times 10^{-3} \checkmark$ Second line of table: $2.2 \times 10^{-3}, 4.4 \times 10^{-3}, \checkmark$ 4.7×10^{-2}	3.	Look carefully at the table. Ecf for third marking point only.

Qn	Expected Answers	Marks	Additional guidance
8(a)	Time for one (complete) oscillation OWTTE \checkmark	1	
8(b)	1.0 mr or 1 m	1	
(c)(i)	Either: T^{2} vs L, T vsL ${ }^{1 / 2}$ or $L g T$ vs $L g L \checkmark$	1	
(c)(ii)	Consistent: straight line \checkmark through origin \checkmark or, for \lg graph, gradient of straight line $\checkmark=2$ (or $1 / 2 \checkmark$)	2	
(d)	Energy lost per oscillation $=\mathrm{mgh} \checkmark / 43000=$ $9 \times 9.8 \times 1.2 / 43000 \checkmark=2.46 \mathrm{~mJ} \checkmark$	3	Need to give own value of answer if method not clear.
(e) (i)	runs for longer \checkmark as more stored energy \checkmark	2	Can argue that smaller mass gives same stored energy.
(e) (ii)	Any two from: * longer L gives larger T *longer L allows smaller changes in time period (i.e. to make clock run a little slower/quicker) large mass bob has more energy in system *(fractional) energy loss per oscillation smaller -air resistance has less effect on a massive bob	2	Don't award 'runs for longer' as a conclusion twice.
9 (a)	Time $=2 \pi \mathrm{r} / 1.7 \times 10^{4} \checkmark=155230 \mathrm{~s} \checkmark=43.1$ hours	2	
(b) (i)	$\begin{aligned} & -G M m / r^{2} \checkmark=-m v^{2} / r \\ & \text { So: } G M / r^{2}=v^{2} / r v \end{aligned}$	2	
(ii)	$\begin{aligned} M= & \left(1.7 \times 10^{4}\right)^{2} \times 4.2 \times 10^{8} / 6.67 \times 10^{-11} \\ & =1.82 \times 10^{27} \mathrm{~kg} \end{aligned}$	2	Need to give own value of answer if method not clear
(c)	$\begin{aligned} & \mathrm{Vg}=-\mathrm{GM} / \mathrm{r}=-6.67 \times 10^{-11} \times 1.9 \times 10^{27} / 7.1 \times 10^{7} \checkmark \\ &=-1.79 \times 10^{9} \mathrm{Jkg}^{-1} \checkmark \end{aligned}$	2	
$\begin{aligned} & \text { (d) (i) } \\ & d(i i) \end{aligned}$	$1 / 2 m v^{2}=1 / 2 \times 4 \times 10^{12} \times 10000^{2}=2 \times 10^{20} \mathrm{j}$ the fragment will have gained k.e. \checkmark as it lost gpe during the approach to the planet. (Or force argument: Attracted by gravity \checkmark causes it to accelerate \checkmark	1 2	Penalise inconsistent argument. Do not allow 'increasing gravity' arguments.
$\begin{aligned} & 10 \\ & \text { (a)(i) } \end{aligned}$	$-E / k T$ is very large \downarrow (or $\mathrm{e}^{\text {targe number }}$ is small, or $1 / \mathrm{e}^{\text {large number }}$ is small) OWTTE	1	
(a)(ii) (a)	E/kT approaches zero, \checkmark so BF approaches one $e^{-1} \quad$ = 0.37 OWTTE	1	Or e^{-x} where x is a positive number must be less than one.
(iii) (b) (i)	$\begin{aligned} & \left.F=e^{-1.3 \times 10^{1 .-1914.38 \times 10.23 \times 310} \checkmark=e^{-30}=9.4 \times 10^{-14}} \begin{array}{l} \left(e^{-30.2}=6.3 \times 10^{-14}\right)^{\checkmark} \end{array}\right) . \end{aligned}$	2	Need to give own value of answer
(b)(ii)	$\begin{aligned} & F=e^{-6.0 \times 10^{\wedge} \cdot 2001.38 \times 10^{-2}-23 \times 310} \checkmark=8.1 \times 10^{-7} \\ & 8.1 \times 10^{-7} / 6.3 \times 10^{-14}=1.2 \times 10^{7} \checkmark \end{aligned}$	3	6×10^{-14} gives 1.35×10^{7}

Qn	Expected Answers	Marks	Additional guidance
$\begin{aligned} & \text { b) } \\ & \text { iii) } \end{aligned}$	Higher factor means more molecules are able \checkmark to react because they enough (sufficient) energy.	2	Don't allow 'more energy'
$\begin{aligned} & 1 \text { 1(a) } \\ & \text { i) } \end{aligned}$	$12 / 2.5 \times 10^{18} \checkmark=4.8 \times 10^{-18} \checkmark$	2	Need to give own value of answer
a) ii) a) iii)	$0.693 / 5 \times 10^{-18}=1.39 \times 10^{17} \mathrm{~s} \checkmark=4.3 \times 10^{9}$ years. (or using 4.8×10^{-18} gives 4.5×10^{9} years) radioactive decay is a random process \checkmark so all that is known is that in a given sample a given number will decay, but not which nuclei.	2 1 2	ecf a(ii)
11(b)	3 half lives $\checkmark=3 \times 4.3 \times 10^{9} \square=1.3 \times 10^{10}$ years \checkmark		
$\begin{aligned} & \text { í1(b) } \\ & \text { ii) } \end{aligned}$	Because the stars were not formed before the universe (but some time after)	1	
c)(i)	Minimum age $=9.8 \times 10^{9} \mathrm{yr} \checkmark$ maximum $=1.9 \times 10^{10} \mathrm{yr} \checkmark$ (3.1×10^{17} and 6.3×10^{17} in seconds)	2	One mark if both correct but in s .
c)	It shows that the younger age of the universe can't be correct \checkmark hence larger value of Ho incorrect \checkmark	2	Must be focused on values given (c)
	Quality of written communication	4 max	

Jan 2003

Qn	Expected Answers	Marks	Additional guidance
1 (a)	neutrino	1	
1 (b)	alpha	1	
1 (c)	proton	1	
2 (a)	$\begin{aligned} & 90 \mathrm{mWb}=90 \times 10^{-3} \mathrm{~Wb}, 450 \mu \mathrm{~s}=450 \times 10^{-6} \mathrm{~s} \\ & 90 \times 10^{-3} / 450 \times 10^{-6}\left(=200 \mathrm{~Wb} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
$\because(b)$	200 V	1	
\therefore	gradient/slope	1	
4	C	1	
5	$\begin{aligned} & F=q v B \text { (eor) } \\ & F=0.25 \times 3.2 \times 10^{-19} \times 1.5 \times 10^{7}=1.2 \times 10^{-12} \mathrm{~N} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
$\begin{aligned} & 6(\mathrm{a}) \\ & 6(\mathrm{~b}) \end{aligned}$	$3.0-2.5=0.5 \mathrm{eV}$ A	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
7	six	1	
8		4	minimum between 20 and 40 [1] tends to 0 at small proton number [1] slow increase above 40 [1] to less than half minimum value [1]
10	$\begin{aligned} B & =F / I I \\ T & \equiv N A^{-1} \mathrm{~m}^{-1} \\ \mathrm{~T} & \equiv \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2} A^{-1} \mathrm{~m}^{-1} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	accept correct alternative demonstrations for [3]

Qn	Expected Answers	Marks	Additional guidance
11(a)(i)		2	line parallel to cathode (can curve at edges) [1] 1/3rd way across from anode to cathode (by eye) [1]
11(a)(ii)	$\begin{aligned} & E_{k}=e V \\ & E_{k}=1.6 \times 10^{-19} \times 600=9.6 \times 10^{-17} \mathrm{~J} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
11(b)(i)	five lines at right angles where touch plates (by eye) evenly spaced with downwards arrows	1 1	accept increased spacing/outward curved lines at edges
11 (b)(ii)	500 V	1	
11(b)(iii)	$\begin{aligned} & E=V / d \\ & E=500 / 40 \times 10^{-3}=1.25 \times 10^{4} \end{aligned}$ $\mathrm{N} \mathrm{C}^{-1}$ or $\mathrm{V} \mathrm{m}^{-1}$ or correct equivalent	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	ecf 12(b)(ii)
11(d)(i)		3	parabolic inside deflection plates [1] straight outside (both ends) [1] upwards deflection [1]
11(d)(ii)	any of the following, maximum [2] - constant horizontal speed/no horizontal force - vertical acceleration/force between plates - due to electric field/attraction to upper plate/repulsion from lower plate - no forces outside field region (owtte)	2	

Qn	Expected Answers	Marks	Additional guidance
12(a)(i)	$V=k Q / r$	1	
	$V=9.0 \times 10^{9} \times 1.6 \times 10^{-19 / 5.3 \times 10^{-11}}=27.2 \mathrm{~V}$	1	
12(a)(ii)	$E_{p}=Q V$	1	
	$E_{p}=-1.6 \times 10^{-19} \times 27.2=-4.35 \times 10^{-18} \mathrm{~J}$	1	
12(b)(i)	$\rho=m v$	1	accept $E_{\mathrm{k}}=p^{2 / 2 m}$
	$v=2.0 \times 10^{-24} / 9.1 \times 10^{-31}=2.2 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$	1	accept reverse
	$\begin{aligned} & E_{k}=0.5 \mathrm{mv}^{2}=0.5 \times 9.1 \times 10^{-31} \times\left(2.2 \times 10^{6}\right)^{2} \\ & \left(=2.2 \times 10^{-18} \mathrm{~J}\right) \end{aligned}$	1	calculation
12(b)(ii)	$\lambda=h / p$	1	
	$\lambda=6.6 \times 10^{-34} / 2.0 \times 10^{-24}=3.3 \times 10^{-10} \mathrm{~m}$	1	
12(c)	electron is bound/in orbit around proton (wtte)	1	
	so forms a standing wave	1	
	with nodes at limits of atom (accept a diagram) or diameter/circumference $=$ integral number of half wavelengths	1	

