2863/01

.

٢

Qn	Expected Answers	Marks	Additional guidance
1 (a)	A✓	1	
1(b)	В ✓	1	
2	Unit of f^2 is $s^{-2} \checkmark or f$ is s^{-1} (unit of x is m therefore) combined unit is m s ⁻² (which is the unit of acceleration.) \checkmark	2	
3 (a)		2	One mark if 310 used giving 123 kg
, 3(b)	e.g. lower body temperature, you just can't do it(approx twenty times body mass), too much fluid absorbed ✓	1	Any sensible comment
4 (a)	70 m s ⁻¹ √	1	
4(b)	$70 \times 0.11 = 7.7 \checkmark \text{ kg m s}^{-1} \checkmark \text{ Ns e.c.f. from (a)}$	2	
5(a)	Area under graph (equiv to $\frac{1}{2}$ QV) = $\frac{1}{2}$ x 3.5 x 10 ⁻³ x 8 \checkmark = 0.014 J \checkmark	2	
5(b)	Grad = 3 x 10 ⁻³ /6.8 (for example) ✓ = 4.4 x 10 ⁻⁴ F✓	2	Answers in range 4.3 to 4.6 (\times 10 ⁻⁴). Penalise 4 or more sf
6(a)	$E \sim kT = 1.38 \times 10^{-23} \times 10,000 \checkmark = 1.38 \times 10^{-19} J \checkmark$ If 3/2 kT used accept 2.1 x 10 ⁻¹⁹ J	2	Need to give own value of answer
6(b)		2	
7		3	Look carefully at the table. Ecf for third marking point only.

3

Qn	Expected Answers	Marks	Additional guidance
8(a)	Time for one (complete) oscillation OWTTE ✓	1	
8(b)	1.0 m✓ or 1 m	1	
	• • • • • • • • • • • • • • • • • • •		
(c)(i)	Either: T² vs L, T vsL¹/² or Lg T vs Lg L ✓	1	
(c)(ii)	Consistent: straight line \checkmark through origin \checkmark or, for lg graph, gradient of straight line \checkmark = 2 (or $\frac{1}{2}$ \checkmark)	2	
(d)	Energy lost per oscillation= mgh √/43 000 = .	3	Need to give own value of answer if method not
	9 x 9.8 x1.2 /43 000 ✓ = 2.46 mJ ✓		clear.
(e) (i)	runs for longer ✓ as more stored energy ✓	2	Can argue that smaller mass gives same stored energy.
(0)	Any two from: * longer L gives larger T	2	Don't award 'runs for
(e) (ii)	*longer L allows smaller changes in time period (i.e.		longer' as a conclusion twice.
	to make clock run a little slower/quicker) *large mass bob has more energy in system		
	 *(fractional) energy loss per oscillation smaller *air resistance has less effect on a massive bob 		
	air resistance has less effect on a massive bob		
9 (a)	Time = $2\pi r/1.7 \times 10^4 \checkmark$ = 155230 s \checkmark = 43.1 hours	2	
	$-GMm/r^2 \checkmark = -mv^2/r$	2	
(b) (i)	So: $GM/r^2 = v^2/r^2$		
	Therefore $M = v^2 r/G$		Nood to give own value
(ii)	$M = (1.7 \times 10^4)^2 \times 4.2 \times 10^6 / 6.67 \times 10^{-11} \checkmark$	2	Need to give own value of answer if method not
	$= 1.82 \times 10^{27} \text{ kg}$		clear
(c)	Vg = -GM/r = - 6.67 x 10 ⁻¹¹ x 1.9 x 10 ²⁷ /7.1 x 10 ⁷ ✓ = -1.79 x 10 ⁹ J kg ⁻¹ ✓	2	
(d) (i)	$\frac{1}{2}$ mv ² = $\frac{1}{2}$ x 4 x 10 ¹² x 10000 ² = 2 x 10 ²⁰ J ×	1	
d(ii)	the fragment will have gained k.e. ✓ as it lost gpe during the	2	Penalise inconsistent
	approach to the planet. ✓ (Or force argument: Attracted by gravity✓ causes it to	2	argument. Do not allow
	accelerate√		'increasing gravity' arguments.
10	-E/kT is very large ✓ (or e ^{-large number} is small, or 1/e ^{large number} is	1	
(a)(i)	small) OWTTE		
(a)(ii)	E/kT approaches zero, ✓ so BF approaches one	1	Or e ^{-x} where x is a positive number must be less than
(a)	e ⁻¹ ✓ = 0.37 OWTTE	1	one.
(iii) (b) (i)	$F = e^{-1.3 \times 10^{-19/1.38 \times 10^{-23 \times 310}} \checkmark} = e^{-30} = 9.4 \times 10^{-14} \checkmark$	2	Need to give own
	$(e^{-30.2} = 6.3 \times 10^{-14})$		value of answer
(b)(ii)	$F = e^{-6.0 \times 10^{-20/1.38 \times 10^{-23 \times 310}}} = 8.1 \times 10^{-7} \checkmark$	3	6 x 10 ⁻¹⁴ gives 1.35 x 10 ⁷
	$8.1 \times 10^{-7}/6.3 \times 10^{-14} = 1.2 \times 10^7 \checkmark$		

.

-

.

ž

Qn	Expected Answers	Marks	Additional guidance
b) iii)	Higher factor means more molecules are able ✓ to react because they enough (sufficient) energy. ✓	2	Don't allow 'more energy'
1(a) i)	$12/2.5 \times 10^{18} \checkmark = 4.8 \times 10^{-18} \checkmark$	2	Need to give own value of answer
a) ii)	$0.693/5 \times 10^{-18} = 1.39 \times 10^{17} \text{ s} \checkmark = 4.3 \times 10^{9} \text{ years.} \checkmark$ (or using 4.8 x 10 ⁻¹⁸ gives 4.5 x 10 ⁹ years)	2	
a) iii)	radioactive decay is a random process \checkmark so all that is known is that in a given sample a given number will decay, but not which	1	
	nuclei.	2	ecf a(ii)
l1(b)	3 half lives✓ = 3 x 4.3 x 10⁰□ = 1.3 x 10¹º years✓		
í 1(b) ii)	Because the stars were not formed before the universe ✓ (but some time after)	1	
c)(i)	Minimum age = 9.8×10^9 yr \checkmark maximum = 1.9×10^{10} yr \checkmark (3.1 x 10 ¹⁷ and 6.3 x 10 ¹⁷ in seconds)	2	One mark if both correct but in s.
c) ii)	It shows that the younger age of the universe can't be correct \checkmark hence larger value of Ho incorrect \checkmark	2	Must be focused on values given (c)
	Quality of written communication	4 max	

an 2003

Qn	Expected Answers	Marks	Additional guidance
1 (a)	neutrino	1	
1 (b)	alpha	1	
1 (c)	proton	. 1	
2 (a)	90 mWb = 90×10^{-3} Wb, 450 μ s = 450×10^{-6} s $90 \times 10^{-3}/450 \times 10^{-6}$ (= 200 Wb s ⁻¹)	1	
2(6)	200 V	1	
3	gradient/slope	1	
4	С	1	
5	F = qvB (eor) $F = 0.25 \times 3.2 \times 10^{-19} \times 1.5 \times 10^7 = 1.2 \times 10^{-12} \text{ N}$	1	
6 (a)	3.0 - 2.5 = 0.5 eV	1	
6 (b)	Α .	1	
7	six	1	
8	binding energy 0 0 20 40 50 80 100 proton number	4	minimum between 20 and 40 [1] tends to 0 at small proton number [1] slow increase above 40 [1] to less than half minimum value [1]
9	B = F/II $T \equiv N A^{-1} m^{-1}$ $T \equiv kg m s^{-2} A^{-1} m^{-1}$	1 1 1	accept correct alternative demonstrations for [3]

Qn	Expected Answers	Marks	Additional guidance
10(a)	$A = \lambda N$ (owtte)	1	
	large $T_{1/2}$ means small decay constant λ	1	
10(b)(i)	percentage transmission: $B0$ 40 20 0 5 10 15 20 25 30 35 40	3	starts at 100% [1] exponential shape [1] going through correct points (by eye) [1]
	thickness/mm		
10(b)(ii)	18% transmission	1	ecf from graph
	(accept between 15% and 20%) ecf: activity = $0.18 \times 4.0 \times 10^4 = 7.2 \times 10^3 \text{ s}^{-1}$	1	(accept between 6.0×10^3 and 8.0×10^3)
10(c)(i)	particles emitted in all directions, body only on one side (AW)	1	
	sharehold a potivity y time y energy	1	
10(c)(ii)	energy absorbed = activity × time × energy = $0.5 \times 4 \times 10^4 \times 8.8 \times 10^{-14} \times 3600 = 6.3 \times 10^{-6} \text{ J}$	1	
10(c)(iii)	 any of the following, maximum [2] beta has short range so dose is not shared over whole body 	2	
	 dose equivalent to tissue around source will be between 1 and 100 µSv still much smaller than annual background dose of 2 mSv, so risk is small calculation of relative risk 		

٠

.

Qn	Expected Answers	Marks	Additional guidance
11(a)(i)	cathode anode	2	line parallel to cathode (can curve at edges)
	-600 V 0 V		[1] 1/3rd way across from anode to cathode (by eye) [1]
11(a)(ii)	E _k = eV	1	
	$E_{\rm K} = 1.6 \times 10^{-19} \times 600 = 9.6 \times 10^{-17} \rm J$	1	
11(b)(i)	five lines at right angles where touch plates (by eye)	1	accept increased spacing/outward
	evenly spaced with downwards arrows	1	curved lines at edges
11(b)(ii)	500 V	1	
11(b)(iii)	E = V/d E = 500 / 40×10 ⁻³ = 1.25×10 ⁴	1	ecf 12(b)(ii)
	N C ⁻¹ or V m ⁻¹ or correct equivalent	1	
11(d)(i)	+250 V	3	parabolic inside deflection plates [1]
			straight outside (both ends) [1]
	-250 V		upwards deflection [1]
11(d)(ii)	 any of the following, maximum [2] constant horizontal speed/no horizontal force 	2	
	 vertical acceleration/force between plates due to electric field/attraction to upper plate/repulsion from lower plate 		
	 no forces outside field region (owtte) 		

• .

Qn	Expected Answers	Marks	Additional guidance
12(a)(i)	V = kQ/r	1	
. , , , ,	$V = 9.0 \times 10^9 \times 1.6 \times 10^{-19} / 5.3 \times 10^{-11} = 27.2 \text{ V}$	1	
12(a)(ii)	$E_{\rm p} = QV$	1	
	$E_{\rm p}^{\rm P}$ = -1.6×10 ⁻¹⁹ × 27.2 = -4.35×10 ⁻¹⁸ J	1	
12(b)(i)	p = mv	1	accept $E_k = p^2/2m$
	$v = 2.0 \times 10^{-24} / 9.1 \times 10^{-31} = 2.2 \times 10^6 \text{ m s}^{-1}$	1	accept reverse
	$ E_{\rm k} = 0.5 m v^2 = 0.5 \times 9.1 \times 10^{-31} \times (2.2 \times 10^6)^2 $ (= 2.2×10 ⁻¹⁸ J)	1	calculation
12(b)(ii)	$\lambda = h/p$	1	
,2(0)(")	$\lambda = 6.6 \times 10^{-34} / 2.0 \times 10^{-24} = 3.3 \times 10^{-10} \text{ m}$	1	
12(c)	electron is bound/in orbit around proton (wtte)	1	
	so forms a standing wave	1	
	with nodes at limits of atom (accept a diagram) or diameter/circumference = integral number of half wavelengths	1	

.

۲.

••

•

.

Qn	Expected Answers	Marks	Additional guidance
13(a)		1	any sensible complete loop which threads both H coils and stays in iron as much as possible
13(b)(i)	90° / π/2	1	
13(b)(ii)	Small	1	all four resultants same correct length by eye
13(b)(iii)	rotates round anticlockwise	1	
13(b)(iv)	changing flux induces emf in rotor which results in currents in rotor which interact with field to create rotating force	1 1 1	accept argument in terms of Lenz's law for full marks
	Quality of written communication	4 max	

.

.

.