Advanced GCE Physics
June 2003 Assessment Session
Unit Threshold Marks

Unit		Maximum	a	b	c	d	e	u
2860	Raw	90	71	65	59	53	47	0
	UMS	100	80	70	60	50	40	0
2861	Raw	90	64	57	50	43	36	0
	UMS	110	88	77	66	55	44	0
2862	Raw	120	97	85	73	62	51	0
	UMS	90	72	63	54	45	36	0
2863 Option A	Raw	127	103	94	85	76	67	0
	UMS	100	80	70	60	50	40	0
$\begin{gathered} 2863 \\ \text { Option B } \end{gathered}$	Raw	127	103	94	85	76	67	0
	UMS	100	80	70	60	50	40	0
2864 Option A	Raw	119	91	83	75	67	59	0
	UMS	110	88	77	66	55	44	0
2864 Option B	Raw	119	91	83	75	67	59	0
	UMS	110	88	77	66	55	44	0
2865	Raw	90	62	56	50	44	38	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results
Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 8 8}$	300	240	210	180	150	120	0
$\mathbf{7 8 8 8}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{3 8 8 8}$	24.4	44.1	63.4	79.0	90.3	100	6805

7888	30.0	52.0	71.2	86.5	96.0	100	5723

RECOGNISING ACHIEVEMENT

2860/01 Physics in Action
 June 2003
 Mark Scheme

Physics B (Advancing Physics) mark schemes - an introduction

Just as the philosophy of the Advancing Physics course develops the student's understanding of Physics, so the philosophy of the examination rewards the candidate for showing that understanding. These mark schemes must be viewed in that light, for in practice the examiners' standardisation meeting is of at least equal importance.

The following points need to be borne in mind when reading the published mark schemes:

- Alternative approaches to a question are rewarded equally with that given in the scheme, provided that the physics is sound. As an example, when a candidate is required to "Show that..." followed by a numerical value, it is always possible to work back from the required value to the data.
- Open questions, such as the questions in section C permit a very wide variety of approaches, and the candidate's own approach must be rewarded according to the degree to which it has been successful. Real examples of differing approaches are discussed in standardisation meetings, and specimen answers produced by candidates are used as 'case law' for examiners when marking scripts.
- Final and intermediate calculated values in the schemes are given to assist the examiners in spotting whether candidates are proceeding correctly. Mark schemes frequently give calculated values to degrees of precision greater than those warranted by the data, to show values that one might expect to see in candidates' working.
- Where a calculation is worth two marks, one mark is generally given for the method, and the other for the evaluation of the quantity to be calculated.
- If part of a question uses a value calculated earlier, any error in the former result is not penalised further, being counted as error carried forward: the candidate's own previous result is taken as correct for the subsequent calculation.
- Inappropriate numbers of significant figures in a final answer are penalised by the loss of a mark, generally once per examination paper. The maximum number of significant figures deemed to be permissible is one more than that given in the data; two more significant figures would be excessive. This does not apply in questions where candidates are required to show that a given value is correct.
- Where units are not provided in the question or answer line the candidate is expected to give the units used in the answer.
- Quality of written communication will be assessed where there are opportunities to write extended prose.

SECTION C

The outline mark schemes given here will be given more clarity by the papers seen when the examination is taken. Some of these scripts will be used as case law to establish the quality of answer required to gain the marks available.
It is not possible to write a mark scheme that anticipates every example which students have studied.

For some of the longer descriptive questions three marks will be used (in scheme called the 1/2/3 style).

1 will indicate an attempt has been made
2 will indicate the description is satisfactory, but contains errors
3 will indicate the description is essentially correct

Abbreviations, annotations and conventions used in the Mark Scheme				
Qn	Expected Answers		Marks	Additional guidance
Section A				
1a	$\begin{array}{\|ll} \hline \text { aluminium } \checkmark \\ \text { glass } & \checkmark \\ \text { rubber } & \checkmark \\ \hline \end{array}$		1	
2a	$1^{\text {st }}$ ray to $(2,0) \checkmark$ $2^{\text {nd }}$ ray parallel to incident beam by eye beam returns to sender / parallel / back sensible physics e.g. intensity / independence of angle			first reflected ray only allow one mark allow partial second reflected ray AW allow "more visible"
3 a b	$\begin{array}{ll} \hline \text { C } & \checkmark \\ \text { B } & \checkmark \\ \hline \end{array}$		1	
4 a b c	oscillations / waves / cycles / vibrations / samples per second \checkmark digital: discrete / quantised / binary / 0 or $1 \checkmark$ sampling in time explained \checkmark binary digit / 0 or 1 / $1 / 8$ byte ora \checkmark		1 1 1 1	AW NOT pitch / events AW accept diagrams AW accept diagrams AW NOT piece
$5 a$ b	any correct diff: brighter / more contrast / clearer decrease pixel value / range of values used is stretched but allow ecf			allow clearer edges NOT smoothed accept - / \div / x NOT +
$6 a$ b c	$\begin{array}{lll} \text { A } & \checkmark \\ \text { C } & \checkmark \\ \text { C } & \checkmark \end{array}$		1 1 1	
7	flatter convex wavefronts slightly greater and constant $\lambda 2.6<2 \lambda<3.8 \mathrm{~cm} \checkmark$		1	continuity not essential
		Section A Total	20	

Qn	Expected Answers	Marks	Additional guidance
	Section B		
8a b(i) (ii) (iii) (iv)	(very) high \checkmark; plastic / allow rubber \checkmark $\begin{aligned} & G=(\sigma A) / L=\left(5.9 \times 10^{7} \times 1.8 \times 10^{-6}\right) / 60 \checkmark ;=1.77 \mathrm{~S} \checkmark \\ & V=I / G /=13 / 1.77 \checkmark ;=7.3(4) \vee \checkmark(7.2 \mathrm{VOK}) \end{aligned}$ $P=I V=13 \times 7.34=95.5 \mathrm{~W} \checkmark(93.9 \mathrm{~W}$ OK) ecf cable heats up \checkmark; heat cannot dissipate if coiled / cable could melt or become damaged / unsafe	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AW substitution ; evaluation transposition $\mathrm{V}=\mathrm{IR}$ or $\mathrm{G}=\mathrm{I} / \mathrm{V}$ insufficient ; eval. I^{2} / G or $V^{2} G O K$ AW or other sensible suggestions
$9 a$ b $\underset{(i)}{C}$ (ii) (iii)	T anywhere on outside of loop \checkmark; C on inside of loop \checkmark $2 \pi(R+\underline{r})$ either bracket $\checkmark ; 2 \pi \underline{r} \checkmark$; $2 \pi r / 2 \pi R \quad \checkmark$ permanent / plastic deformation / beyond elastic limit \checkmark $\begin{array}{ll} \mathrm{R}=\mathrm{r} / \varepsilon & /=0.75 \times 10^{-3} / 0.002 \checkmark ; \\ =0.375 \mathrm{~m} & / \\ \end{array}$ $\mathrm{R}=\mathrm{r} / \varepsilon / 0.17 \times 10^{-3} / 0.002 \checkmark ;=0.085 \mathrm{~m} / 85 \mathrm{~mm} \checkmark$ (use of $x 5$ or $x 19$ strands no marks) cable is more flexible / can be coiled more tightly / can be coiled elastically with little force / circuit not broken if one strand breaks \checkmark	$\begin{aligned} & \hline 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	AW method symbol / number evaluation with unit method; evaluation + unit AW sensible suggestion OK
10 a b(i) (ii) (iii) (iv)	$\begin{aligned} & 20(\mathrm{~nm}) / 14 \checkmark=1 .(43) \times 10^{-9} \mathrm{~m} \text { accept } 1 \mathrm{~nm} \checkmark \mathrm{SF} \\ & V=4 \pi(0.50 / 2)^{3} / 3 \checkmark ;=0.0654 \mathrm{~mm}^{3} \checkmark \\ & (300+280+280+260) / 4=(1120) / 4=280 \mathrm{~mm} \checkmark \\ & A=\pi(280 / 2)^{2} \checkmark ;=6.16 \times 10^{4} \mathrm{~mm}^{2} \checkmark \\ & h=V / A \checkmark ;=0.0654 /\left(6.16 \times 10^{4}\right) \checkmark ;=1.06 \times 10^{-6} \mathrm{~mm} \checkmark \\ & / 1.1 \mathrm{~nm} \text { etc accept estimates to } 1 \mathrm{SF} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	method ; evaluation penalise 4 or more SF substitution ; evaluation accept bare answer ecf on (ii) rearrangement ; subs ; evaluation with appropriate unit ecf

Qn	Expected Answers	Marks	Additional guidance
	Section C		
12 a	any image e.g. surface of Europa no tick no mark plates of ice resolved \checkmark; striations / buckling of plates \checkmark	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	sets context any useful details
b	identify radiation e.g. light \checkmark accept from (a) then $1 / 2 / 3$ style $\checkmark \checkmark \checkmark$ e.g. image focussed by camera lens / refraction ; onto pixels of CCD ; here charge builds up in proportion to light intensity / charge per pixel yields data for pixel value	1 3	well labelled diagram can score full marks
c(i)	sensible estimates e.g. $10^{3}<$ pixels $<10^{7} \checkmark$; expect between 8 and $24 \checkmark$;	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	unless special case unless special case
(ii)	combined gives e.g. $8 \times 10^{3}<$ bits $<2.4 \times 10^{8} \checkmark$	1	ecf on (i) method ; eval.
(iii)	time $=$ info $/ 56000 \checkmark$; e.g. $8 \times 10^{6} / 56000=143 \mathrm{~s} \checkmark$	2	
(iv)	image compression \checkmark; reduces transmission time $\checkmark /$ other users on line / noise ; increases transmission time NOT different systems	2	AW any plausible idea linked to correct sense of change

Qn	Expected Answers	Marks	Additional guidance
13a b(i) (ii) c(i) (ii) d	Variable identified e.g. frequency \checkmark; suitable component identified e.g. bimorph element \checkmark circuit diagram $1 / 2 / 3$ style e.g. bimorph to c.r.o. description of circuit $1 / 2 / 3$ style $\checkmark \checkmark \checkmark$ to max 5 marks e.g. ceramic bimorph generates 4 V peak to peak; for movement of $10 \mu \mathrm{~m}$; c.r.o. suitably fast response to detect rapid oscillations in p.d. change physical variable e.g. sig. gen. \checkmark suitable measure of input variable e.g. c.r.o. to measure frequency \checkmark test for linearity e.g. straight line graph / suitable numerical analysis any benefit e.g. inter / extrapolation of calibration is easier with constant sensitivity / linear LUT / simple to calculate any two correct points repeatability ; reliability / removal of human error / anomalies ; random errors reduced / improve accuracy ; take an average of the results $\checkmark \checkmark$	5 1 1 1 1 2	2 max for active sensor with suitable monitor circuit up to 5 max.
$\begin{gathered} 12 \\ \& 13 \end{gathered}$	Quality of written communication	4	
	Section C Total	30	

QoWC Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in Section C of the paper.
$4 \max \quad$ The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3
The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2 The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.

0
The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

RECOGNISING ACHIEVEMENT

2861 Understanding Processes

June 2003

Mark Scheme

The following annotations may be used when marking:
$\mathrm{X}=$ incorrect response (errors may also be underlined)
$\wedge \quad=\quad$ omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf $=$ error carried forward (in consequential marking)
con $=$ contradiction (in cases where candidates contradict themselves in the same response)
$\mathrm{sf}=\quad$ error in the number of significant figures

Abbreviations, annotations and conventions used in the Mark Scheme:

l	$=$ alternative and acceptable answers for the same marking point
$;$	$=$ separates marking points
NOT	$=$ answers not worthy of credit
()	$=$ words which are not essential to gain credit
$\overline{\text { ecf }}$ (underlining)	$=$ key words which must be used
AW	$=$ allow error carried forward in consequential marking
ora	$=$ alternative wording
	$=$ or reverse argument

Physics B (Advancing Physics) mark schemes - an introduction

Just as the philosophy of the Advancing Physics course develops the student's understanding of Physics, so the philosophy of the examination rewards the candidate for showing that understanding. These mark schemes must be viewed in that light, for in practice the examiners' standardisation meeting is of at least equal importance.

The following points need to be borne in mind when reading the published mark schemes:

- Alternative approaches to a question are rewarded equally with that given in the scheme, provided that the physics is sound. As an example, when a candidate is required to "Show that..." followed by a numerical value, it is always possible to work back from the required value to the data.
- Open questions, such as the questions in section C permit a very wide variety of approaches, and the candidate's own approach must be rewarded according to the degree to which it has been successful. Real examples of differing approaches are discussed in standardisation meetings, and specimen answers produced by candidates are used as 'case law' for examiners when marking scripts.
- Final and intermediate calculated values in the schemes are given to assist the examiners in spotting whether candidates are proceeding correctly. Mark schemes frequently give calculated values to degrees of precision greater than those warranted by the data, to show values that one might expect to see in candidates' working.
- Where a calculation is worth two marks, one mark is generally given for the method, and the other for the evaluation of the quantity to be calculated.
- If part of a question uses a value calculated earlier, any error in the former result is not penalised further, being counted as error carried forward: the candidate's own previous result is taken as correct for the subsequent calculation.
- Inappropriate numbers of significant figures in a final answer are penalised by the loss of a mark, generally once per examination paper. The maximum number of significant figures deemed to be permissible is one more than that given in the data; two more significant figures would be excessive. This does not apply in questions where candidates are required to show that a given value is correct.
- Where units are not provided in the question or answer line the candidate is expected to give the units used in the answer.
- Quality of written communication will be assessed where there are opportunities to write extended prose.

SECTION C

The outline mark schemes given here will be given more clarity by the papers seen when the examination is taken. Some of these scripts will be used as case law to establish the quality of answer required to gain the marks available.
It is not possible to write a mark scheme that anticipates every example which students have studied.
For some of the longer descriptive questions three marks will be used (in scheme called the 1/2/3 style).

1 will indicate an attempt has been made
2 will indicate the description is satisfactory, but contains errors
3 will indicate the description is essentially correct

QoWC Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in Section C of the paper.
$4 \max \quad$ The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively.
Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3

The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2 The candidate will express moderately complex ideas fairly clearly but not always
fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1
The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.
$0 \quad$ The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

RECOGNISING ACHIEVEMENT

2863/01 Rise \& Fall of the Clockwork Universe

June 2003
Mark Scheme

The following annotations may be used when marking:

```
X = incorrect response (errors may also be underlined)
^ = omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the
    same response)
sf = error in the number of significant figures
```

Abbreviations, annotations and conventions used in the Mark Scheme:

I	$=$ alternative and acceptable answers for the same marking point
$;$	$=$ separates marking points
NOT	$=$ answers not worthy of credit
()	$=$ words which are not essential to gain credit
$\overline{\text { ecf }}$ (underlining)	$=$ key words which must be used
AW	$=$ allow error carried forward in consequential marking
ora	$=$ alternative wording
	$=$ or reverse argument

Question	Expected Answers	Marks
1 (a)	B	1
	A	1
2 (a)	Q	1
	R	1
3	s^{-1}	1
4 (a) (b)(i)	The time values shown are not equally spaced \checkmark AW	1
	Rate of change of height is equal to the height of water multiplied by a constant/ rate of change of height proportional to height. \checkmark The negative sign shows that the height is decreasing. \checkmark OR: rate of fall \checkmark of height proportional to height \checkmark. OR: height falls \checkmark exponentially \checkmark. e.g. size of hole/ c.s.a of container/viscosity/temperature \checkmark	2 1
$\begin{array}{\|ll} 5 & \text { (a) } \\ & \text { (b) } \\ & \text { (c) } \end{array}$	$E=300 \times 1.4 \times 10^{-23}=4.2 \times 10^{-21} \checkmark$ or clear method	1
	$\left(3.2 \times 10^{-20} \times 2\right) / 4.2 \times 10^{-21} \quad \checkmark=15.2$ (or 16.0 if 4.0×10^{-21} used) ORA.	1
	Two from: $k T$ gives a measure of average energy, some molecules will have greater energy \checkmark through chance interchanges AW \checkmark lif T is bigger then KT (or molecular energy) increases \checkmark Stating 'E/kT of 15 to 30 allows processes to occur'. \checkmark	2
6	$m v=0.35 \times 22=7.7 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \checkmark$ or clear method	1
	$v=.25 \times 7.7 / .05 \checkmark=39 \mathrm{~m} \mathrm{~s}^{-1} \checkmark$ (40 if $8 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ used)	2
$\begin{array}{\|ll} 7 & \text { (a) } \\ & \text { (b) } \end{array}$	$f=1 / T=1 / 2.4 \checkmark=0.42 \mathrm{~Hz} \checkmark$ penalise rounding errors here. (allow.4,.42,.417)	2
	$x=0.2 \cos (2 \pi \times .42 \times 2) \checkmark=0.11 \mathrm{~m} \checkmark(2.4$ in the equation is not markworthy)	2
8 (a)(i)	$E=1 / 2 C V^{2}=1 / 2 \times 10 \times 2.5^{2} \checkmark=31.3 \mathrm{~J} \checkmark$ need own value. ORA gives $C=9.6$	2
(ii)	$\mathrm{RC}=10 \times 9.0 \times 10^{3}=90000 \mathrm{~s} \checkmark=90000 / 60 \times 60=25 \mathrm{hrs} \checkmark \text { ORA one day }$ $=8.6 \times 10^{4} \mathrm{~s}$.	2
(b)(i)	Pd values: $0.93 \vee \checkmark .34 \mathrm{~V} \checkmark$ (allow .92)	2
(ii)	Points \checkmark curved line \checkmark	2
(iii)	Use of graph to show that p.d. is not sufficient \checkmark (eg line from x axis to line and from line to y axis) ORA	1

9(a)(i) (ii) (iii)	$\begin{aligned} & g=(-) G M / r^{2} \checkmark \\ & \text { correct units on RHS of eqn: } \mathrm{N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \mathrm{~m} \mathrm{~kg} \mathrm{~m}^{-3} \checkmark=\mathrm{N} \mathrm{~kg}^{-1} \checkmark \\ & g=4 / 3 \times 6.7 \times 10^{-11} \times \pi \times 10000 \times 4.0 \times 10^{14} \checkmark=1.1 \times 10^{9}\left(\mathrm{~N} \mathrm{~kg}^{-1}\right) \checkmark \\ & \text { (one mark if } \mathrm{r}=10 \text { used) } \end{aligned}$	1 2 2
$\begin{array}{r} \text { (b)(i) } \\ \text { (ii) } \end{array}$	$2 \pi \mathrm{r} /(1 / 50) \checkmark=2 \pi \times 10000 / 0.02=3.1 \times 10^{6} \checkmark \mathrm{~m} \mathrm{~s}^{-1}$ comparision made \checkmark $a=v^{2} / r=\left(3.1 \times 10^{6}\right)^{2} / 10000 \checkmark=9.6 \times 10^{8} \checkmark \mathrm{~m} \mathrm{~s}^{-2} \checkmark$ (other values generated by different values of b (i) e.g. 9×10^{8} if 3×10^{6} used)	3 3
(c)	Any two from: To keep a particle on the surface the magnitude of field strength must equal or exceed the magnitude of centripetal acceleration. \checkmark gravitational force on particle equal to or greater than centripetal force needed to keep particle on surface. \checkmark This is the case in the star considered. \checkmark Or consistent argument from ecf using own values from a (iii) NB only one mark max if centrifugal arguments used.	2
10(a) (b)	$\begin{aligned} & 2.8 \times 10^{-2} / 6.0 \times 10^{23}=4.7 \times 10^{-26} \mathrm{~kg} \checkmark \text { or clear method } \\ & \mathrm{v}^{2}=3 / 2(2 \mathrm{kT} / \mathrm{m})=3 \times 1.4 \times 10^{-23} \times 300 / 5 \times 10^{-26} \checkmark->\mathrm{v}=498 \mathrm{~m} \mathrm{~s}^{-1} \checkmark \text { need } \\ & \text { own value } \end{aligned}$	1
(c)(i) (ii)	$t=s / v=7 / 500 \checkmark=0.014 s \checkmark$ need own value Much greater distance travelled \checkmark because of collisions \checkmark diagram or extra detail $\sqrt{ }$	2
(d)	Much more massive so for same energy \checkmark the velocity will be smaller \checkmark (hence) the rate of diffusion will be lower. OR: perfume molecules larger so more likely to collide \checkmark more changes in direction (shorter mean free path) \checkmark (hence) rate of diffusion slower \checkmark.	3
11 (a)	$\mathrm{s}=\mathrm{vt} / 2=3 \times 10^{8} \times 40.2 / 2=6.03 \times 10^{9} \mathrm{~m} \checkmark$ or clear method. Assumption: distance asteroid or Earth moves during 20.2 s is very small and can be disregarded./ the velocity of light is unchanged on reflection/ other sensible \checkmark 'velocity of signal constant' insufficient for mark.	2
(b) (i) (ii)	$\Delta t=0.1 \mathrm{~s} \checkmark \Delta \mathrm{~s}=0.1 \times 3 \times 10^{8} \checkmark=3 \times 10^{7} \mathrm{~m}$ (or by calculating new s and subtracting) $v=3 \times 10^{7} /(14 \times 60) \checkmark=3.6 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1} \checkmark(\mathrm{~m} \checkmark \mathrm{e} \checkmark)$. sf penalty for more than 3 sf	2 2
(c) (d) (i)	weaker reflected signal \checkmark long delay in detection \checkmark or other sensible. Do not accept stars moving. $\mathrm{d}=\mathrm{v} / \mathrm{Ho}=1 \times 10^{6} / 2.2 \times 10^{-18} \checkmark=4.55 \times 10^{23} \checkmark$ or clear method	2 1
(ii) (e)	(Light travels at finite velocity therefore long distances) takes long time AW \checkmark Calculation on time taken for light from Y to reach Earth: $t=s / v=1.5 \times 10^{15} \mathrm{~s}$ (=47 million years) (If calculation given, 'long time' is implicit) $H_{0}=70 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{M} \mathrm{pc}^{-1}=70 \times 10^{3} / 3.1 \times 10^{22} \checkmark=2.3 \times 10^{-18} \mathrm{~s}^{-1} \checkmark \text { need own }$ value.	2 2
	Quality of Written Communication $\checkmark \checkmark \checkmark \checkmark$	4

11 (a)	$\mathrm{s}=\mathrm{vt} / 2=3 \times 10^{8} \times 40.2 / 2=6.03 \times 10^{9} \mathrm{~m} \checkmark$ or clear method. Assumption: distance asteroid or Earth moves during 20.2 s is very small and can be disregarded./ the velocity of light is unchanged on reflection/ other sensible \checkmark 'velocity of signal constant' insufficient for mark.	$\begin{array}{rr}2 & \\ & 2 \\ & 2\end{array}$
(b) $\left.\begin{array}{r}\text { (i) } \\ \text { (ii) } \\ \text { (c) } \\ \text { (d) }\end{array}\right)$	$\Delta \mathrm{t}=0.1 \mathrm{~s} \checkmark \Delta \mathrm{~s}=0.1 \times 3 \times 10^{8} \checkmark=3 \times 10^{7} \mathrm{~m}$ (or by calculating new s and subtracting) $v=3 \times 10^{7} /(14 \times 60) \checkmark=3.6 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1} \checkmark(\mathrm{~m} \checkmark \mathrm{e} \checkmark)$. sf penalty for more than 3 sf weaker reflected signal \checkmark long delay in detection \checkmark or other sensible. Do not accept stars moving. $\mathrm{d}=\mathrm{v} / \mathrm{Ho}=1 \times 10^{6} / 2.2 \times 10^{-18} \checkmark=4.55 \times 10^{23} \checkmark$ or clear method	2 1 2
(ii) (e)	(Light travels at finite velocity therefore long distances) takes long time AW \checkmark Calculation on time taken for light from Y to reach Earth: $t=s / v=1.5 \times 10^{15} \mathrm{~s}$ (=47 million years) (If calculation given, 'long time' is implicit) $H_{0}=70 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{M} \mathrm{pc}^{-1}=70 \times 10^{3} / 3.1 \times 10^{22} \checkmark=2.3 \times 10^{-18} \mathrm{~s}^{-1} \checkmark$ need own value.	2 4

Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in Section B of the paper.

4 The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultess accuracy, deploying a wide range of grammatical constructions and specialist terms.

3 The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2 The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.

0 The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

RECOGNISING ACHIEVEMENT

2864/01 Field and Particle Pictures

June 2003

Mark Scheme

The following annotations may be used when marking:
$\mathrm{X}=$ incorrect response (errors may also be underlined)
$\wedge \quad=\quad$ omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf $=$ error carried forward (in consequential marking)
con $=$ contradiction (in cases where candidates contradict themselves in the same response)
$\mathrm{sf}=\quad$ error in the number of significant figures

Abbreviations, annotations and conventions used in the Mark Scheme:

m	$=$ method mark
s	$=$ substitution mark
e	$=$ evaluation mark
$/$	$=$ alternative correct answers
$;$	$=$ separates marking points
NOT	$=$ answers which are not worthy of credit
()	$=$ words which are not essential to gain credit
$\overline{\text { ecf }}$	$=$ enderlining) key words which must be used to gain credit
ora	$=$ or reverse argument
eor	$=$ evidence of rule
wtte	$=$ words to that effect

Physics B (Advancing Physics) mark schemes - an introduction

Just as the philosophy of the Advancing Physics course develops the student's understanding of Physics, so the philosophy of the examination rewards the candidate for showing that understanding. These mark schemes must be viewed in that light, for in practice the examiners' standardisation meeting is of at least equal importance.
The following points need to be borne in mind when reading the published mark schemes:

- Alternative approaches to a question are rewarded equally with that given in the scheme, provided that the physics is sound. As an example, when a candidate is required to "Show that..." followed by a numerical value, it is always possible to work back from the required value to the data.
- Open questions permit a very wide variety of approaches, and the candidate's own approach must be rewarded according to the degree to which it has been successful. Real examples of differing approaches are discussed in standardisation meetings, and specimen answers produced by candidates are used as 'case law' for examiners when marking scripts.
- Final and intermediate calculated values in the scheme are given to assist the examiners in spotting whether candidates are proceeding correctly. Mark schemes frequently give calculated values to degrees of precision greater than those warranted by the data, to show values that one might expect to see in candidate's working.
- Where a calculation is worth two marks, one mark is generally given for the method, and the other for the evaluation of the quantity to be calculated.
- If part of a question uses a value calculated earlier, any error in the former result is not penalised further, being counted as error carried forward: the candidate's own previous result is taken as correct for the subsequent calculation.
- Inappropriate numbers of significant figures in a final answer are penalised by the loss of a mark, generally once per examination paper. The maximum number of significant figures deemed to be permissible is one more than that given in the data; two more significant figures would be excessive. This does not apply in questions where candidates are required to show that a given value is correct.
- Where units are not provided in the question or answer line the candidate is expected to give the units used in the answer.
- Quality of written communication will be assessed where there are opportunities to write extended prose.

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
\[
1(a)
\] \\
(b)
\end{tabular} \& U
U \& \begin{tabular}{l}
J C-1 (NOT correct alternative) \\
T (NOT correct alternative)
\end{tabular} \& 1
1 \\
\hline \begin{tabular}{|c}
2(a) \\
\\
\\
\\
\\
\\
\\
(b)
\end{tabular} \& U

U \& two complete loops, passing through coil and not crossing each other lines closer together as they cross the gap (by eye) ACCEPT 90° bends in lines, and partly outside the core

B \&	1
1	
1	

\hline 3(a)
(b)

(c) \& U \& | $\lambda=\ln (2) / T 1 / 2=0.693 / 9.4 \times 10^{3}=\underline{7.4} \times 10^{-5} \mathrm{~s}^{-1}$ |
| :--- |
| ACCEPT reverse calculation: $T_{0.5}=9.9 \times 10^{3} \mathrm{~s}$ |
| wtte the following points |
| - t has units of s |
| - both N and ΔN cancel / $N($ or ΔN) has no units |
| - correct substitution of units into formula $N=A / \lambda=3 \times 10^{3} / 7.4 \times 10^{-5}=4.1 \times 10^{7}$ |
| ACCEPT 4×10^{7} |
| ecf $\lambda=7 \times 10^{5}: N=4.3 \times 10^{7}$ | \& 1

1
1

\hline
\end{tabular}

9(a)(i)	U	$E=V / d$ (eor)		
	U	$E=325 / 1.25=260 \mathrm{Vm}^{-1}$	\quad	1
:---				

11(a)(i)	C	nucleus breaks up (wtte)	1
	A	ACCEPT atom but not molecule or particle	2
	B	any of the following, maximum [2] - binding energy is difference in energy between nucleons and separated nucleons - total binding energy changes / total mass decreases - mass:energy relationship (wtte) - surplus energy becomes kinetic energy - sketch of binding energy - mass curve	
(iii)	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \mathrm{C} \end{aligned}$	any of the following, maximum [3] - neutrons trigger further fissions of uranium - need to remove some neutrons from each fission - so that one neutron per fission causes another fission - neutrons are absorbed in control rods/boron/cadmium - neutrons are slowed down - through collisions with moderator/carbon/water - slow neutrons easily absorbed by uranium	3
(b)	D	none of the beta particles will escape the water, but most of the gamma photons will (wite) (answer must refer to both particles and photons, references to energy are neutral)	1
(c)	$\begin{array}{\|l} \hline \text { C } \\ \text { C } \\ \text { B } \\ \text { B } \end{array}$	any of the following pairs, maximum [2] + [2] - increase distance between astronauts and reactor - to reduce intensity of gamma photons at astronaut (wtte) - reduce power output of reactor - so that fission rate / gamma emissions is reduced - place extra shielding (e.g. supplies, lead) between astronaut and reactor - to absorb (some more) gamma photons - change material of existing shielding - to one which is a better absorber of gamma photons (wtte)	4

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
12(a)(i) \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{E} \\
\& \mathrm{D} \\
\& \mathrm{E} \\
\& \mathrm{E}
\end{aligned}
\] \& \begin{tabular}{l}
\[
\lambda=72 \text { or } 73 \times 10^{-6} \mathrm{~m}
\] \\
ecf incorrect value for \(\lambda: c=f \lambda\) (symbols or words) \\
\(f=3.0 \times 10^{8} / 73 \times 10^{-6}=4.1 \times 10^{12} \mathrm{~Hz}\) or \(4.2 \times 10^{12} \mathrm{~Hz}\) \\
arrow from \(n=2\) to \(n=3\), pointing up
\end{tabular} \& 1
1
1

1

\hline (iii) \& $$
\begin{aligned}
& \mathrm{D} \\
& \mathrm{E}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& E=h f(\text { eor }), \text { ecf answer from } 12(\mathrm{a})(\mathrm{i}) \\
& \varepsilon=6.6 \times 10^{-34} \times 4.1 \times 10^{12}=2.7 \times 10^{-21} \mathrm{~J} \\
& \left(\text { accept } 3 \times 10^{-21} \mathrm{~J}\right)
\end{aligned}
$$
\] \& 1

\hline (b)(i) \& $$
\begin{aligned}
& \mathrm{U} \\
& \mathrm{E}
\end{aligned}
$$ \& standing wave with nodes at each end and just one antinode at centre (by eye) \& 1

\hline (ii) \& $$
\begin{aligned}
& \text { C } \\
& \text { B } \\
& \text { B }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& p=\frac{h}{\lambda} \\
& E=\frac{p^{2}}{2 m}=\left(\frac{n}{\lambda}\right)^{2} \frac{1}{2 m}=\frac{h^{2}}{2 m m^{2}} \\
& \lambda^{2}=\frac{n^{2}}{2 m E} \quad \text { or reverse argument }
\end{aligned}
$$
\] \& 1

1
1

\hline (iii) \& C \& $$
\lambda=\sqrt{\frac{h^{2}}{2 m E}}=\sqrt{\frac{\left(6.6 \times 10^{-34}\right)^{2}}{2 \times 5.1 \times 10^{-26} \times 135 \times 10^{-21}}}=5.6 \times 10^{-11} \mathrm{~m}
$$ \& 1

\hline (c)(i) \& C \& ecf incorrect value of λ :

$$
\text { length }=0.5 \times 5.6 \times 10^{-11} \mathrm{~m}=2.8 \times 10^{-11} \mathrm{~m}
$$ \& 1

\hline (ii) \& \& $$
\begin{aligned}
& \text { ecf incorrect value for } \varepsilon \text { in (a)(iii): } \\
& \text { for } n=3, E=2 \times 2.70 \times 10^{-21}+1.35 \times 10^{-21}=6.75 \times 10^{-21} \mathrm{~J} \\
& \text { ecf incorrect value for } E \text { : } \\
& \text { leading to } \lambda=2.52 \times 10^{-11} \mathrm{~m} \\
& \text { length for } n=3 \text { is } 1.5 \lambda=3.8 \times 10^{-11} \mathrm{~m}
\end{aligned}
$$ \& 1

1

\hline \& \& Quality of Written Communication \& 4

\hline
\end{tabular}

Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in Section B of the paper.

4 The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3 The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2 The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.

0 The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

RECOGNISING ACHIEVEMENT

2865/01 Advances in Physics

June 2003

Mark Scheme

Physics B (Advancing Physics) mark schemes - an introduction

Just as the philosophy of the Advancing Physics course develops the student's understanding of Physics, so the philosophy of the examination rewards the candidate for showing that understanding. These mark schemes must be viewed in that light, for in practice the examiners' standardisation meeting is of at least equal importance.

The following points need to be borne in mind when reading the published mark schemes:

- Alternative approaches to a question are rewarded equally with that given in the scheme, provided that the physics is sound. As an example, when a candidate is required to "Show that..." followed by a numerical value, it is always possible to work back from the required value to the data.
- Open questions, such as the questions in section C in AS, permit a very wide variety of approaches, and the candidate's own approach must be rewarded according to the degree to which it has been successful. Real examples of differing approaches are discussed in standardisation meetings, and specimen answers produced by candidates are used as 'case law' for examiners when marking scripts
- Final and intermediate calculated values in the schemes are given to assist the examiners in spotting whether candidates are proceeding correctly. Mark schemes frequently give calculated values to degrees of precision greater than those warranted by the data, to show values that one might expect to see in candidates' working.
- Where a calculation is worth two marks, one mark is generally given for the method, and the other for the evaluation of the quantity to be calculated.
- If part of a question uses a value calculated earlier, any error in the former result is not penalised further, being counted as error carried forward: the candidate's own previous result is taken as correct for the subsequent calculation.
- Inappropriate numbers of significant figures in a final answer are penalised by the loss of a mark, generally once per examination paper. The maximum number of significant figures deemed to be permissible is one more than that given in the data; two more significant figures would be excessive. This does not apply in questions where candidates are required to show that a given value is correct.
- Where units are not provided in the question or answer line the candidate is expected to give the units used in the answer.
- Quality of written communication will be assessed where there are opportunities to write extended prose.

```
x = incorrect response (errors may also be underlined)
\(\wedge \quad=\) omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the same
    response)
sf \(\quad=\) error in the number of significant figures
```

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Abbreviations, annotations and conventions used in the Mark Scheme} \& \multicolumn{3}{|l|}{} \\
\hline Qn \& Expected A \& \& Marks \& Additional guidance \\
\hline \begin{tabular}{l}
\[
1 \text { (a }
\] \\
(b) (c) \\
(d) \\
(d)
\end{tabular} \& \begin{tabular}{l}
The Universe / \\
The surface (are rapid, then slowe Distance betwee than/more than \\
Straight line \(\checkmark\) \\
Through \((0,0) \checkmark\)
\[
\begin{aligned}
H_{0} \& =v / d=2800 \mathrm{kr} \\
\& =70 \checkmark \mathrm{~m} \mathrm{e} \mathrm{k}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
f the balloon has increased/ initially \\
ur galaxy and \(B\) is increasing faster distance between our galaxy \& \(A \checkmark\) \\
-1/40 Mpc \\
\(\mathrm{Mpc}^{-1} \checkmark\) (unit mark for the paper)
\end{tabular} \& 2
3 \& \begin{tabular}{l}
Do not penalise any reference to edge or boundary No explicit mention of balloon model needed \\
'Is (directly) proportional' gets \(\checkmark \checkmark\) \\
Or \(0.07 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{pc}^{-1}\) \\
Penalise \(>3\) s.f.
\end{tabular} \\
\hline \(2(a)\)
(b)
(c) \& \begin{tabular}{l}
Method of dispers Added detail, e.g. detail on diagram Galaxy A \(\checkmark\) Corre right on these diag \\
Outline of Big Bang started small/hot/ Wavelengths stret Galaxies moving Further galaxies h
\end{tabular} \& \begin{tabular}{l}
ion e.g. grating, prism \(\checkmark\) how detected/observed, collimation, \\
tly identifying redshift as movement to rams \(\checkmark\) \\
g theory e.g. expanding Universe/ tc \(\checkmark\) \\
ch with expanding Universe \(\checkmark\) way from us/each other (faster) \(\checkmark\) have greater redshifts \(\checkmark\)
\end{tabular} \& 3 \& \begin{tabular}{l}
Labelled sketch will do \\
Up to \(3 \checkmark\). Can refer to balloon model of question 1
\end{tabular} \\
\hline 3 (a)
(b)

(c) \& \begin{tabular}{l}
(i) Constant

(ii) Cover a linear reg

Estimating peak

$T=1.6 \times 10^{11} \mathrm{~Hz}$

Intensity lower

Peak at smaller

Peak occurs rou

 \&

atio / $10 \times$ each time / owtte \checkmark eater range of frequencies owtte / < 10^{10} allows calculation \checkmark (

$$
5.9 \times 10^{10} \mathrm{~Hz} \mathrm{~K}^{-1}=2.7 \mathrm{~K} \checkmark
$$

quency \checkmark ly one grid-spacing back \checkmark
\end{tabular} \& 2

2 \& | Reverse argument from 3 K to f is acceptable, with \checkmark for calc. of f and \checkmark for comparison with graph |
| :--- |
| Peak just to right of $10^{10} \mathrm{~Hz}$ |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Qn \& Expected Answers \& Marks \& Additional guidance \\
\hline \begin{tabular}{l}
4 (a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \begin{tabular}{l}
Weight \(=1.4 \times 10^{3} \mathrm{~kg} \times 9.8 \mathrm{~N} \mathrm{~kg}^{-1}=1.4 \times 10^{4} \mathrm{~N} \checkmark\) \\
Mass of air \(=1.2 \mathrm{~kg} \mathrm{~m}^{-3} \times 1.0 \times 10^{4} \mathrm{~m}^{3}=1.2 \times 10^{4} \mathrm{~kg} \checkmark\) \\
Weight \(=1.2 \times 10^{4} \mathrm{~kg} \times 9.8 \mathrm{~N} \mathrm{~kg}^{-1}=1.2 \times 10^{5} \mathrm{~N} \checkmark\)
\[
\begin{aligned}
\& F=1.2 \times 10^{5} \mathrm{~N}-1.4 \times 10^{4} \mathrm{~N}=1.1 \times 10^{5} \mathrm{~N} \checkmark \\
\& a=F / \mathrm{m}=1.1 \times 10^{5} \mathrm{~N} / 1.4 \times 10^{3} \mathrm{~kg}=76\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \checkmark \mathrm{m} \checkmark \mathrm{e}
\end{aligned}
\] \\
if \(<3 \checkmark\) given above, credit can be given for comments on \\
subsequent role of air resistance \\
Each first mark is a consequence of the change, and the second mark is a force consequence. \\
i. volume of balloon increases \(\checkmark\) upthrust is increased \(\checkmark\) \\
ii. weight of displaced air is reduced \(\checkmark /\) upthrust is reduced \(\checkmark\) \\
iii. volume of balloon decreases \(\checkmark\) upthrust is reduced \(\checkmark /\) density of external air increases or pressure decreases \(\checkmark\) consequence \(\checkmark\)
\end{tabular} \& 1
2
3

6 \& | Allow $1.37 \times 10^{4} \mathrm{~N}$ |
| :--- |
| $1.0 \times 10^{5} \mathrm{~N}$ if not rounded earlier; $a=76$ $\mathrm{m} \mathrm{s}^{-2}$ if $1.1 \times 10^{5} \mathrm{~N}$ is used |
| Quality of Written Communication can be assessed in this question |
| 'Force' marks could refer to changes in air resistance. |

\hline | 5 (a) |
| :--- |
| (b) |
| (c) | \& | Wavefronts straight/ 'rays' parallel \checkmark |
| :--- |
| (i) |
| (ii) Fig. 5.1 in phase \checkmark |
| Fig. 5.2/Fig 5.3 out of phase/ in antiphase \checkmark |
| Consequence of adding \checkmark |
| (iii) $\sin \theta=\frac{1 / 2 \lambda}{d}=\frac{\lambda}{2 d} \checkmark$ |
| (iv) $\sin \theta=\frac{\lambda}{2 d}=\frac{0.21 \mathrm{~m}}{2 \times 50 \mathrm{~m}}=0.0021 \Rightarrow \theta=0.12^{\circ}$ |
| (i) $\quad d \uparrow \Rightarrow \sin \theta / \theta \downarrow \checkmark$ |
| smaller improves resolution \checkmark |
| relating improvement to ratio $10^{5} / 50$ / resolution 2000× better \checkmark |
| (ii)Very high frequency/very small period \checkmark needs very accurate timing to maintain correct phase relationship \checkmark | \& 1

1
1
3
1
1
1

3 \& | Allow '2 o'clock' to ‘4 o'clock' |
| :--- |
| Ecf from 5 (b) if phase difference $<\pi / 2 \checkmark$ |
| (iii) Needs evidence of reference to triangle in Fig. 5.2 e.g. on diagram (iv) or $\theta=0.0021 \mathrm{rad}$ |
| Should refer to timing. |

\hline
\end{tabular}

Qn	Expected Answers	Marks	Additional guidance
6 (a) (b)	(i) Value is close to (and >) $1 \checkmark$ because refractive index is ratio of these speeds \checkmark (ii) $n=1 / \sin C \checkmark n \approx 1 \Rightarrow C=90^{\circ} \checkmark$ A plane mirror would reflect the parallel beam as a parallel beam owtte \checkmark so the lower part/section near A must be curved in to make the beam converge \checkmark Must be focussed to be detected \checkmark (up to two points)	4 2	QoWC opportunity here also. Could draw on diagram to indicate the relevant reflection physics.
7 (a)	$\begin{aligned} & E_{\mathrm{p}}=m V_{\text {grav }}=-\frac{G M m}{R} \checkmark \\ & =-\frac{6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \times 6 \times 10^{39} \mathrm{~kg} \times 1.7 \times 10^{-27} \mathrm{~kg}}{1 \times 10^{13} \mathrm{~m}} \\ & =-6.8 \times 10^{-11} \mathrm{~J} \approx-7 \times 10^{-11} \mathrm{~J} \checkmark \mathrm{~m} \checkmark \mathrm{e} \end{aligned}$ Realising that, at $\infty, E_{p}=0 \checkmark$ Application of by conservation of energy \checkmark (i) $E_{\mathrm{k}}=7 \times 10^{-11} \mathrm{~J} / 1.6 \times 10^{-19} \mathrm{~J} \mathrm{eV}^{-1}=4.3 \times 10^{8} \mathrm{eV} \checkmark$ (ii) Gamma (allow X-rays) because very high energy	2	Or by recall Magnitude only needed. Max of one if wrong expression correctly evaluated \checkmark Can refer to potential well $7 \times 10^{-11} \mathrm{~J}$ deep.
8 (a)	$\begin{aligned} & R=\frac{\rho l}{A} \checkmark=2.0 \times 10^{-8} \Omega \mathrm{~m} \times \frac{(10 \times 2(0.03 \mathrm{~m}+0.02 \mathrm{~m}))}{1.2 \times 10^{-7} \mathrm{~m}^{2}} \\ & =0.17 \Omega \approx 0.2 \Omega \checkmark \mathrm{~s} \checkmark \mathrm{e} \end{aligned}$	3	Must show correct use of equation or correct values including $/=1 \mathrm{~m}$
(b)	From N face to S face \checkmark not crossing, and either parallel or spreading out in the centre (must not start at same point on either face) \checkmark	2	One \checkmark for arrows, one \checkmark for shape of field
(c)	Higher permeance/better magnetic circuit owtte greater flux through armature (coil) \checkmark	2	
(d)	$I=V / R \checkmark=3.0 \mathrm{~V} /(2 \times 0.6 \Omega+0.2 \Omega)=2.1 \mathrm{~A} \checkmark \mathrm{~m} \checkmark \mathrm{e}$	3	Can use 0.17Ω for coil
(e)	emf induced by motion \checkmark opposes $3.0 \vee$ supply so $I \downarrow \checkmark$ induced emf increases with motor speed	2	Can quote Lenz's Law. Any two .
(f)	More massive \checkmark (problem) reduced acceleration/longer to brake/must go slower around corners \checkmark (explanation)	2	Any valid physical effect and explanation.

\begin{tabular}{|c|c|c|c|}
\hline Qn \& Expected Answers \& Marks \& Additional guidance

\hline 9 (a)
(b)
(c)

(d)

(e) \& | Light intensity very low that far from the Sun \checkmark $\begin{aligned} & 5.6 \mathrm{MeV}=5.6 \times 10^{6} \mathrm{~J} \times 1.6 \times 10^{-19} \mathrm{~J} \mathrm{eV}^{-1} \\ & =8.96 \times 10^{-13} \mathrm{~J} \approx 9 \times 10^{-13} \mathrm{~J} \checkmark \mathrm{~m} \checkmark \mathrm{e} \end{aligned}$ |
| :--- |
| (i) Number of decays $=630 \mathrm{~W} / 9.0 \times 10^{-13} \mathrm{~J}$ $=7 \times 10^{14} \mathrm{~s}^{-1} \checkmark\left(8.96 \times 10^{-13} \mathrm{~J} \text { gives } 7.03 \times 10^{14} \mathrm{~s}^{-1}\right)$ |
| (ii) Mission is about $T_{1 / 2} / 8 \checkmark$ |
| Assume linear change in this time for estimate \checkmark |
| Decreases by $1 / 2$ in a half life so in $1 / 8$ of a half life it |
| decreases by $1 / 16$. This means that $7 \times 10^{14} \mathrm{~s}^{-1}=15 / 16$ of |
| original so original count $=16 / 15 \times 7 \times 10^{14} \mathrm{~s}^{-1}=7.5 \times 10^{14} \mathrm{~s}^{-}$ $/ T_{1 / 2} \Rightarrow \lambda V$ |
| and then Count $=$ Count $_{0} \mathrm{e}^{-\lambda t}$ where Count $=7 \times 10^{14} \mathrm{~s}^{-1}$ (gives Count ${ }_{0}=7.6 \times 10^{14} \mathrm{~s}^{-1}$) $\checkmark \mathrm{m} \checkmark \mathrm{e}$ |
| Energy $=3 \times 630 \mathrm{~W} \times 3.2 \times 10^{7} \mathrm{~s}=6.0 \times 10^{10} \mathrm{~J} \checkmark$ |
| Energy absorbed by astronaut $=6.0 \times 10^{10} \mathrm{~J} / 10^{11}=0.6 \mathrm{~J} \checkmark$ |
| Dose $=0.6 \mathrm{~J} / 70 \mathrm{~kg}=0.0086 \mathrm{~Gy} \checkmark$ |
| (Very many) electrons liberated in hotter region \checkmark More free electrons results in higher conductivity \checkmark Rate of release of electrons governed by Boltzmann factor/Boltzmann factor increases exponentially/expression for factor quoted with temperature \checkmark | \& 1

2
1
3
3
3

3 \& | Ora from $7 \times 10^{14} \mathrm{~s}^{-1}$ $\begin{aligned} \lambda & =7.9 \times 10^{-3} \mathrm{year}^{-1} \\ & =2.5 \times 10^{-10} \mathrm{~s}^{-1} \end{aligned}$ |
| :--- |
| Can also use $7 \times 10^{14} \mathrm{~s}^{-1}=$ $\text { Count }_{0} \times(1 / 2)^{1 / 8} \checkmark \mathrm{~m} \checkmark \mathrm{e}$ |
| Any relevant reference to k will do here. Either comparison between $\mathrm{k} T$ and E or reference to $e^{-\frac{E}{k T}}$ |

\hline
\end{tabular}

QoWC Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in the whole paper.

4 max \quad The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3
The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2
The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.

0
The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

