Physics B (Advancing Physics)

Advanced GCE A2 7888

Advanced Subsidiary GCE AS 3888

Mark Scheme for the Units

January 2008

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2008
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 0DL
Telephone: 08708706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Physics B (Advancing Physics) (7888)
 Advanced Subsidiary GCE Physics B (Advancing Physics) (3888)

MARK SCHEMES FOR THE UNITS

Component Page
Mark Scheme 2860 Physics in Action 4
Mark Scheme 2861 Understanding Processes 10
Mark Scheme 2863/01 Rise and Fall of the Clockwork Universe 14
Mark Scheme 2864/01 Field and particle Pictures 18
Mark Scheme 2865 Advances in Physics 27
Grade Thresholds 34

Mark Scheme 2860 Physics in Action

Physics B (Advancing Physics) mark schemes - an introduction

Just as the philosophy of the Advancing Physics course develops the student's understanding of Physics, so the philosophy of the examination rewards the candidate for showing that understanding. These mark schemes must be viewed in that light, for in practice the examiners' standardisation meeting is of at least equal importance.

The following points need to be borne in mind when reading the published mark schemes:

- Alternative approaches to a question are rewarded equally with that given in the scheme, provided that the physics is sound. As an example, when a candidate is required to "Show that..." followed by a numerical value, it is always possible to work back from the required value to the data.
- Open questions, such as the questions in section C permit a very wide variety of approaches, and the candidate's own approach must be rewarded according to the degree to which it has been successful. Real examples of differing approaches are discussed in standardisation meetings, and specimen answers produced by candidates are used as 'case law' for examiners when marking scripts.
- Final and intermediate calculated values in the schemes are given to assist the examiners in spotting whether candidates are proceeding correctly. Mark schemes frequently give calculated values to degrees of precision greater than those warranted by the data, to show values that one might expect to see in candidates' working.
- Where a calculation is worth two marks, one mark is generally given for the method, and the other for the evaluation of the quantity to be calculated.
- If part of a question uses a value calculated earlier, any error in the former result is not penalised further, being counted as error carried forward: the candidate's own previous result is taken as correct for the subsequent calculation.
- Inappropriate numbers of significant figures in a final answer are penalised by the loss of a mark, generally once per examination paper. The maximum number of significant figures deemed to be permissible is one more than that given in the data; two more significant figures would be excessive. This does not apply in questions where candidates are required to show that a given value is correct.
- Where units are not provided in the question or answer line the candidate is expected to give the units used in the answer.
- Quality of written communication will be assessed where there are opportunities to write extended prose.

SECTION C

The outline mark schemes given here will be given more clarity by the papers seen when the examination is taken. Some of these scripts will be used as case law to establish the quality of answer required to gain the marks available.
It is not possible to write a mark scheme that anticipates every example which students have studied.

For some of the longer descriptive questions three marks will be used (in scheme called the 1/2/3 style).

1 will indicate an attempt has been made
2 will indicate the description is satisfactory, but contains errors
3 will indicate the description is essentially correct

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1. Please ensure that you use the final version of the Mark Scheme.

You are advised to destroy all draft versions.
2. Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ($1 / 2$) should never be used.
3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
x = incorrect response (errors may also be underlined)
\wedge = omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con \quad contradiction (in cases where candidates contradict themselves in the same response)
sf $\quad=$ error in the number of significant figures
4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each double page should be ringed at the end of the question, on the bottom right hand side. These totals should be added up to give the final total on the front of the paper.
5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

for 7. (c) on following page

\begin{tabular}{|c|c|c|c|}
\hline Qn \& Expected Answers \& Marks \& A \\
\hline 7(a)
(b)
(c)
(d) \& \begin{tabular}{l}
Section B \\
further / away (from the lens) ; ...moves to \(\infty\) / far away / larger / magnified when \(|u|=v=2 f ; f=0.2 / 2=0.10(\mathrm{~m})\) OR by lens equation sub'd correctly allow 0.09 to 0.11 m lower curve by eye ; passing through (-0.1, 0.1) \\
(i) \(1 / u\) and/or \(1 / v\) are curvatures of wavefronts / curvature out of lens = curvature into lens + lens power / graph of form \(y=(m) x+c / c\) is constant / power of lens is constant \\
(ii) evidence of finding intercept ; \(\mathrm{c}=1 / \mathrm{f}=10 \therefore \mathrm{f}=0.1 \mathrm{~m}\) OR lens equation for point on line
\end{tabular} \& 2
2
2

$\frac{2}{10}$ \& | AW |
| :--- |
| method ; evaluation other valid methods see graph previous page |
| Any two points |
| or curvature added by lens |
| refer to (b) if $1 / \mathrm{f} \approx 10$ |
| both times 2 marks |

\hline 8(a)
(b)

(c) \& | (i) $40 \mathrm{M}(\mathrm{W})$; (ii) (dissipated) into atmosphere (as thermal / ionisation / em radiation energy) |
| :--- |
| (iii) $G=I^{2} / P /=100^{2} / 1400 ;=7.1(4)\left(\mathrm{Skm}^{-1}\right)$ |
| one mark for $R=0.14 \Omega$ OR $V=14 \mathrm{~V}$ |
| (i) $m=G L L \rho / \sigma$ OR $A=G L / \sigma$ |
| (ii) (ratio) $=\rho_{\text {ratio }} / \sigma_{\text {ratio }} / I G, L$ constant $=(2.9 / 0.18)=16 .(1)$ |
| (i) $G \propto A$ so $\times 30 / 7=4.3 ; G \propto \sigma$ so $\div 0.18(\times 5.6)$ $G_{A I}=0.29 \times 4.3 / 0.18=6.9 \mathrm{~S}$ |
| (ii) $G_{\text {Totala }}=0.29+6.9=7.2$ (S) $/(7.0+0.29)=7.29$ (S) |
| (iii) aluminium provides good conductivity / conductance / low density / mass / weight Steel provides good strength / stiffness / (composite material) benefits of two named properties stranded cables for more flexibility | \& \[

$$
\begin{aligned}
& \hline 2 \\
& 2 \\
& 1 \\
& 1 \\
& 1 \\
& 2 \\
& 1 \\
& 1 \\
& 1 \\
& 12
\end{aligned}
$$

\] \& | AW |
| :--- |
| accept lost as heat |
| method ; evaluation |
| part marks |
| clear algebra |
| any correct method evaluation |
| give credit for correct |
| part calculations and |
| allow ecf on sum |
| Any sensible statement |

\hline 9a)
(b)

(c) \& \begin{tabular}{l}
cell / +- rails ; resistors in series ; Vmeter across fixed R

(i) $f=1 / T$ / $=1 / 0.02$; $=50 \mathrm{~Hz}$

(ii) sensor p.d. does not settle instantly / output p.d. rises and levels ; when LED graph rises vertically / const

(iii) $10 \pm 5 \mathrm{~ms}$

(iv) persistence of vision / reference to response time of eye-brain / eye like LDR

sawtooth waveform ; since less / $1 / 10$ time to respond smaller amplitude ; ditto min higher / max lower ; ditto

 \&

2
1
1
1
1

$\underline{2}$

11

 \&

correct symbols

method ; evaluation any 2 points AW

AW

any reasonable suggestion about rods / cones

accept less time to respond
\end{tabular}

\hline 10a)
(b)

(c)

(d) \& | method $\left(\mathrm{e} . \mathrm{g} .480 \pm 20\right.$ pixels $\left.\times 2.1 \times 10^{-4} \mathrm{~m}\right) ;=0.10 \mathrm{~m}$ |
| :--- |
| (i) $2^{6} \quad / 64$ |
| (ii) 500×500 pixels image ${ }^{-1} ; 250000 \times 6$ bits image $^{-1}$; $1.5 \times 10^{6} \times 4=6.0 \times 10^{6} \quad\left(\right.$ bits s $\left.^{-1}\right)$ |
| each column of figures consistent ; values $0,40,0$ $0.08 / 2.1 \times 10^{-4}=380 /$ allow 400 | \& \[

$$
\begin{gathered}
2 \\
\\
1 \\
2 \\
1 \\
2 \\
2 \\
\frac{1}{9} \\
42 \\
\hline
\end{gathered}
$$

\] \& | accept 9.7 to 10.5 cm |
| :--- |
| $250000 ; 1.5 \times 10^{6}$ |
| any values ; correct values |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Qn \& Expected Answers \& Marks \& Additional guidance

\hline 11a)
\&
(b)
(c)

(d) \& \begin{tabular}{l}
Section C

evidence of: adding force to a specimen ; to long thin specimen ; quality mark for diagram given for a feasible method measuring diameter NOT area measuring the original length of specimen measuring the extension $\sigma=F /\left(\pi D^{2} / 4\right)$ ecf on F / A in (b) ; $\varepsilon=x / L$ $E=\sigma / \varepsilon$ (one value) ; average multiple values OR plot graph of σ against ε; (initial) gradient graph

1/2/3 style e.g. use of uniform / long / thin wire initially use standard steel metre rule / tape to measure length use micrometer ; measure diameter $\pm 0.01 \mathrm{~mm}$ Vernier ; to measure small extension $\pm 0.1 \mathrm{~mm}$ repeat readings and average to find mean and spread plot line of best fit

 \&

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 2 \\
& 2
\end{aligned}
$$

3

13

 \&

mark (a) \& (b) \& (c) together look for evidence in diagram / description for the six points

OR F vs x graph and times by (L / A)

one procedure well described max 2 Look back to (a) and (b) also
\end{tabular}

\hline 12a) \& | (i) e.g. computer disk drive through databus to processor |
| :--- |
| (ii) (speed) at which the signal / wave travels NOT info (iii) the amount of information sent / received per second |
| e.g. 80 M ; bits s ${ }^{-1}$ |
| (iv) $1 / 2 / 3$ style expect continuous signal waveform for analogue and binary $0 / 1$ signal for digital |
| (i) relevant diagram ; noise is random / unwanted interference on a signal / contains no useful information content / from outside the system ; signal is the variation carrying the useful / wanted information being transmitted |
| (ii) $1 / 2 / 3$ style: in analogue signals noise cannot be distinguished from the signal, amplification increases both ; |
| digital signals can be amplified / filtered / cleaned up to eliminate noise they have gained ; |
| easy to decide if a digital signal is $0 / 1$ provided S / N ratio is large enough | \& | 1 1 1 2 3 |
| :--- |
| 2 |
| 3 |
| 13 |
| 4 |
| 30 | \& | accept near light speed |
| :--- |
| no unit no value mark $3^{\text {rd }}$ mark for quality |
| AW accept any 2 parts |
| credit fully well annotated diagrams illustrating the ideas accept error correction techniques AW throughout |

\hline
\end{tabular}

QoWC Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in Section C of the paper.
$4 \max \quad$ The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3 The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2 The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.
$0 \quad$ The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

Mark Scheme 2861 Understanding Processes

Qn	Expected Answers	Marks	Additional guidance
8(a)	use $d=1 /\left(\text { no. lines } \mathrm{mm}^{-1}\right)^{\checkmark}$ for calculator value $2.94 \times 10^{-6}(\mathrm{~m}) \checkmark$	2	may find d in mm then convert to m, or work in lines per m 340000 lines m^{-1} $d=1 / 340000$
(b)	consists of 2 wavelengths \checkmark	1	
(c)(i)	$(\tan \theta=0.46 / 3.0) \quad \theta=8.7^{\circ} \checkmark_{\mathrm{e}}$	1	
(ii)	$\lambda=3.0 \times 10^{-6} \times \sin 8.7 \checkmark_{\mathrm{m}}=4.5 \times 10^{-7}(\mathrm{~m}) \quad \checkmark \mathrm{e}$ (ecf from (c)(i) gets method mark in this 'show that ...)	2	accept $\lambda x / L$ approach
(d)(i)	$\lambda_{\text {red }}>\lambda_{\text {blue }} \checkmark \sin \theta=\lambda /$ d idea \checkmark	2	1λ is path diff at θ, red line occurs at larger θ since $\lambda_{\text {red }}>\lambda_{\text {blue }}$
(ii)			\mathbf{x} is the distance from central maximum to red in 1st order spectrum
	$\begin{aligned} \text { fringe sepn }=0.65-0.46= & 0.19(\mathrm{~m}) \quad \checkmark \\ & \text { (or } 0.17(\mathrm{~m}) \text {) } \end{aligned}$	3	
	total	11	
9(a) (i)	accurate plot of points \checkmark appropriate line \checkmark	2	
(ii)	gradient increasing \checkmark gradient is velocity \checkmark (or dist. increases in equal intervals of $\mathrm{t} \checkmark$ this is speed	2	
(iii)	$t=\sqrt{ }(2 \times 3.0 / 9.8) \quad \checkmark_{m}=\underset{(3 \mathbf{s f} \mathbf{~ m a x})}{0.783(s)} \checkmark_{e} \quad(0.78 \text { or } 0.8)$	2	poss sig fig penalty
(iv)	line of fit intercepts t axis at $t=0.8$ s which fits \checkmark	1	
(v)	horizontal displacements decreasing in equal intervals of time	2	or may calc 2 speeds and show decrease
(b)	$\theta=\tan ^{-1}(7.6 / 14) \checkmark_{\mathrm{m}}=28.5^{\circ} \checkmark_{\mathrm{e}}$ (or by careful scale drawing \checkmark to give $27^{\circ}-30^{\circ} \checkmark$)	2	must be the correct angle required
		11	

Qn	Expected Answers	Marks	Additional guidance
12	standing wave example stated \checkmark	1	
(b)	diagram is essentially correct $\checkmark \checkmark \checkmark$ diagram is satisfactory, but some errors/omissions some attempt has been made	3/2/1	
 labelled \checkmark	1	
(c)	description sufficient to execute description partial	2	e.g blow across top of pipe until loud sound..
(d)	a correct representation of a standing wave that could	2	accept just one \mathbf{N} and
(i)	be generated in this situation N and A as appropriate to diagram		A correctly labelled
(ii)	2 waves passing through each other/ superposing \checkmark A and \mathbf{N} explained \checkmark	2	
(e)	a correct representation of another standing wave that could be generated change to system described	2	
	total	13	
$\begin{aligned} & 13 \\ & (\mathrm{a})(\mathrm{i} \end{aligned}$	a distance measurement stated \checkmark	1	
(ii)	sensible estimate of the distance with units \checkmark (within a reasonable range expected)	1	$\begin{aligned} & \text { moon } 10^{7}-10^{9}(\mathrm{~m}) \\ & \text { sun } 10^{10}-10^{12}(\mathrm{~m}) \end{aligned}$
(b) (i)	diagram is essentially correct diagram is satisfactory, but some errors/omissions some attempt has been made (implausible method (zero marks) see guidance \rightarrow)	3	'echo sounding', 'parallax', or 'triangulation' expected
	\ldots + important equipment labelled \checkmark	1	if method implausible (e.g. ultrasound to moon/laser to sun) zero for diagram
(ii)	pulse sent out \checkmark reflected from target \checkmark trip time measured \checkmark	3	mark as independent of parts (a) and (b)
(c)	$s=v t$ idea $\checkmark t$ is half trip time \checkmark clear what v correctly represents in this situation \checkmark	3	
	total	12	
	Quality of Written Communication	4	
	Section C Total	29	

Mark Scheme 2863/01 Rise and Fall of the Clockwork Universe

	Unit Code 2863	Session January	$\begin{aligned} & \text { Year } \\ & 2008 \end{aligned}$		Version Final
```\(\mathrm{m} \quad=\) method mark = substitution mark = evaluation mark = alternative and acceptable answers for the same marking point = separates marking points NOT = answers which are not worthy of credit ( ) = words which are not essential to gain credit ___ = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora \(=\) or reverse argument```					
Qn	Expected Answers			Mark	Additional guidance
1	$\begin{aligned} & \mathrm{J} \checkmark \text { or } \mathrm{Nm} \checkmark \\ & \mathrm{~s}^{-1} \checkmark \end{aligned}$			$\begin{aligned} & 2 \\ & 1 \end{aligned}$	Order unimportant
$\begin{array}{\|l\|} \hline 2 \mathrm{a} \\ \mathrm{~b} \end{array}$	$\begin{aligned} & \text { Red shift } \checkmark \text { AW } \\ & 300 \times 10^{6} \times 9.6 \times 10^{15}=2.9(\text { or } 2.88) \times 10^{24} \mathrm{~m} \checkmark \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Reject Doppler effect Need own value
3	260 seconds $=$ five half lives $\checkmark$ Activity $=1500 / 2^{5}=47$ counts s ${ }^{-1} \checkmark$			2	accept $\lambda=0.0133 \mathrm{~s}^{-1}$   Various possible methods
$\begin{array}{r} 4 \mathrm{a} \\ \mathrm{~b} \end{array}$	$\begin{aligned} & \hline F=(-) \mathrm{mv}^{2} / \mathrm{r} \checkmark=60 \times 10^{2} / 3.4 \checkmark=1800 \mathrm{~N} \checkmark(2 \mathrm{s.f.}) \\ & 1800 /(9.8 \times 60) \checkmark=3 \checkmark \end{aligned}$			$\begin{aligned} & 3 \\ & 2 \end{aligned}$	No s.f. penalty. Must have own value
5	Temp rise $=40 /\left(1.3 \times 10^{-4} \times 130\right) \quad \checkmark=2400 \checkmark \mathrm{~K}$			2	
6	$\mathrm{pV}=\mathrm{nRT} \checkmark$ so $\mathrm{n}=1 \times 10^{5} \times 50 / 8.3 \times 300 \checkmark=2000 \checkmark \mathrm{~mol}$			3	
$7 a$ $b$	Larger amplitude of oscillation $\checkmark$ when driving frequency matches natural frequency $\checkmark$ AW   Same energy $\checkmark$ therefore energy transfer (from vibrating block) at greater rate $\checkmark$ AW			2 2	

Section A Total: 21

Qn	Expected Answers	Marks	Additional guidance
8 a (i)   (ii)   (iii)   (iv)   (v)	For body to escape the total energy must be $>$ or $=0 \checkmark$ /valid energy arguments in terms of Potential at infinity /Loss of KE = gain in PE $\checkmark$.   Work done against resistive forces. $\begin{aligned} & 1 / 2 m v^{2}=G M m / r \checkmark \therefore v^{2}=2 G M m / m r=2 G M / r \checkmark \\ & \therefore v=(2 G M / r)^{1 / 2} \\ & g=G M / r^{2} \checkmark \therefore G M / r=g r \checkmark \therefore v=(2 g r)^{1 / 2} \\ & v=\left(2 \times 9.8 \times 6.4 \times 10^{6}\right)^{1 / 2}=11000 \mathrm{~m} \mathrm{~s}^{-1} \checkmark \end{aligned}$	$1$   1   2   2   1	KE left when escaped   penalise incorrect use of ignoring minus signs $11,200$
(b) (i)   (ii)	$\mathrm{v}=\left(2 \times 4 \times 10^{-21} / 5 \times 10^{-26}\right)^{1 / 2} \quad \checkmark=400 \checkmark \mathrm{~m} \mathrm{~s}^{-1}$   energy/velocity of nitrogen (far) below energy/velocity required.	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	
(c)(i)   (ii)	$=1.9 \times 10^{-22}$   any two of: small chance of particle gaining sufficient energy to escape. $\checkmark$ Over millions of years most particles have enough escape attempts to be successful $\checkmark$ AW BF for Hydrogen is bigger than BF for Nitrogen $\checkmark$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Accept $=2 \times 10^{-22}$
d	Allow more (massive) gas particles to escape $\checkmark$ greater typical energy /velocity/ BF $\checkmark$ AW	2	
9 a	mass $=6 \times 6 \times 10^{-4} \checkmark=3.6 \times 10^{-3} \mathrm{~kg}($ (or 3.6 g$)=$ approx 4	1	
$\begin{aligned} & \hline \mathrm{b}(\mathrm{i}) \\ & \mathrm{b}(\mathrm{ii}) \\ & \mathrm{b}(\mathrm{iii}) \end{aligned}$	$p=0.0009 \times 12=1(.1) \times 10^{-2} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$   Link between force and rate of change of momentum $\checkmark$ $a=1.1 \times 10^{-2} / 0.08=0.14 \checkmark \mathrm{~m} \mathrm{~s}^{-2}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept algebraic explanation Accept N3 approach ecf
C	Any two from:   Pressure/ejection velocity/rate of mass ejection falls therefore $\mathbf{a}$ is less $\checkmark \quad$ Explanation $\checkmark$ e.g air ejected at lower velocity because pressure is less   Air resistance therefore $\mathbf{a}$ is less $\checkmark$ Explanation $\checkmark$ e.g air resistance increases as speed increases   Mass of car (and air) falls therefore a will be greater $\checkmark$   Explanation $\checkmark$ e.g. if roughly similar force $\checkmark$	4	
d	Initial acceleration lower $\checkmark$ as cooler temp leads to lower pressure/ lower ejection velocity/ lower mass ejected per second $\checkmark$	2	
10 a	Correct amplitude $\checkmark$ time period correct $\checkmark$	2	
b	$0.05 \times \sin (2 \times \pi \times 50 \times 0.013) \quad \checkmark=-0.04 \mathrm{~m} \checkmark$	2	Value must be negative
c (i)   (ii)   (iii)	Cosine has maximum value of 1   Answer: $16 \checkmark \mathrm{~m} \mathrm{~s}^{-1}$   Gradient when passing through x axis / maximum gradient $\checkmark$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	15.7
d(i)   (ii)	Point marked on line when $x=0.05$ or -0.05 $A=(-) 4 \pi^{2} \times 50^{2} \times 0.05 \checkmark=(-) 4900 \checkmark \mathrm{~m} \mathrm{~s}^{-2}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	3SF max
11   (a) (i)   (a) (ii)   (a) (iii)	$\begin{aligned} & Q=4700 \times 10^{-6} \times 6 \checkmark=0.028 \mathrm{C} \\ & I=V / R=6 / 1100 \checkmark=5.5 \mathrm{~mA} \\ & T=4700 \times 10^{-6} \times 1100 \checkmark=5.2 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Own answer or method   Or by clear graphical method


Qn	Expected Answers	Marks	Additional guidance
(b)	V is proportional to $\mathrm{Q} \checkmark$, rate of fall of charge $=$ current $\checkmark$	2	Other arguments possible
c(i)   (ii)   (iii)   (iv)	Use of $t=Q / /$ (or rearranged) $\checkmark$   Correct substitution of $Q=C V$ and $R=V / I \checkmark$   Loss of charge $=(-0.017 / 5.2) \times 2.0 \checkmark=6.5(4) \times 10^{-3} \mathrm{C}$   Line from (2.0, 0.017) to (4.0, 0.01) by eye $\checkmark$   Holds rate of decay constant for smaller time period/closer to continuous change $\checkmark$	$2$	Accept numerical arguments   No ecf
	Quality of Written Communication	4	

## Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in Section B of the paper.

4 The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultess accuracy, deploying a wide range of grammatical constructions and specialist terms.

3 The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2 The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.

0 The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

## Mark Scheme 2864/01 Field and particle Pictures

Physics B (Advancing Physics) mark schemes - an introduction

Just as the philosophy of the Advancing Physics course develops the student's understanding of Physics, so the philosophy of the examination rewards the candidate for showing that understanding. These mark schemes must be viewed in that light, for in practice the examiners' standardisation meeting is of at least equal importance.

The following points need to be borne in mind when reading the published mark schemes:

- Alternative approaches to a question are rewarded equally with that given in the scheme, provided that the physics is sound. As an example, when a candidate is required to "Show that..." followed by a numerical value, it is always possible to work back from the required value to the data.
- Open questions permit a very wide variety of approaches, and the candidate's own approach must be rewarded according to the degree to which it has been successful. Real examples of differing approaches are discussed in standardisation meetings, and specimen answers produced by candidates are used as 'case law' for examiners when marking scripts.
- Final and intermediate calculated values in the scheme are given to assist the examiners in spotting whether candidates are proceeding correctly. Mark schemes frequently give calculated values to degrees of precision greater than those warranted by the data, to show values that one might expect to see in candidate's working.
- Where a calculation is worth two marks, one mark is generally given for the method, and the other for the evaluation of the quantity to be calculated.
- If part of a question uses a value calculated earlier, any error in the former result is not penalised further, being counted as error carried forward: the candidate's own previous result is taken as correct for the subsequent calculation.
- Inappropriate numbers of significant figures in a final answer are penalised by the loss of a mark, generally once per examination paper. The maximum number of significant figures deemed to be permissible is one more than that given in the data; two more significant figures would be excessive. This does not apply in questions where candidates are required to show that a given value is correct.
- Where units are not provided in the question or answer line the candidate is expected to give the units used in the answer.
- Quality of written communication will be assessed where there are opportunities to write extended prose.


## ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1 Please ensure that you use the final version of the Mark Scheme.
You are advised to destroy all draft versions.
2 Please mark all post-standardisation scripts in red ink. A tick $(\checkmark)$ should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. Ticks should not be placed in the righthand margin. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ( $1 / 2$ ) should never be used.

3 The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
$\times \quad=$ incorrect response (errors may also be underlined)
$\wedge=$ omission of mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con $=$ contradiction (where candidates contradict themselves in the same response
sf $=$ error in the number of significant figures
up = omission of units with answer
4 The marks awarded for each part question should be indicated in the right-hand margin. The mark total for each double page should be ringed at the bottom right-hand side. These totals should be added up to give the final total on the front of the paper.

5 In cases where candidates are required to give a specific number of answers, mark the first answers up to the total required. Strike through the remainder.

6 The mark awarded for Quality of Written Communication in the margin should equal the number of ticks under the phrase.

7 Correct answers to calculations should obtain full credit even if no working is shown, unless indicated otherwise in the mark scheme.

8 Strike through all blank spaces and pages to give a clear indication that the whole of the script has been considered.

The following abbreviations and conventions are used in the mark scheme:

m	$=$ method mark
s	$=$ substitution mark
e	$=$ evaluation mark
$/$	$=$ alternative correct answers
;	$=$ separates marking points
NOT	$=$ answers which are not worthy of credit
( )	$=$ words which are not essential to gain credit
$\overline{\text { ecf }}$	$=$ (underlining) key words which must be used to gain credit
ora	$=$ error carried forward
eor	$=$ eviderse argument



Question	Expected answer	Mark
4	$\begin{aligned} & B=F / I l \\ & F=1.32 \times 10^{-3} \times 9.8=1.3 \times 10^{-2} \mathrm{~N} \\ & \text { ecf incorrect } F: B=1.3 \times 10^{-2} / 2.63 \times 25 \times 10^{-3}=0.20 \mathrm{~T} \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$
5 a 5 b	gamma photons can be detected outside body patient not radioactive for long / activity high for ease of detection ACCEPT not in the body for long / decays rapidly probability of decay of each nucleus (is $1.3 \times 10^{-5}$ ) in each second ACCEPT $1.3 \times 10^{-5}$ of sample decays in each second ACCEPT calculation showing $T_{1 / 2}=15$ hours   ACCEPT ratio of activity to number of nuclei (owtte)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$   1
6	C	1
$7 \text { a }$ $7 \text { b }$	sine curve with correct period, any amplitude phase $\pm \pi / 2$   true   false   true	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ $1$
8	(electric field strength) of a spherical / point charge (in free space)	1
9	kinetic energy	1


Question	Expected answer	Mark
10 a	two loops all the way round, in the iron, not touching each other.	1
10 b	reduces / stops (eddy) currents   EITHER   by increasing electrical resistance (owtte)   OR   to reduce heating / increase flux / increase efficiency	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
10 ci	triangular waveform with correct frequency, any amplitude	1
	in / out of phase with flux (ecf incorrect shape)	1
10 c ii	emf is rate of change of flux linkage (owtte) so emf constant because flux has constant gradient (owtte) emf changes sign when gradient changes sign (owtte)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
10 c iii	$\begin{aligned} & B=\Phi / A \\ & \Phi_{\max }=0.55 \times 3.1 \times 10^{-4}=1.71 \times 10^{-4} \mathrm{~Wb} \\ & \varepsilon=N \times \Phi_{\max } / 0.25 T \\ & 0.25 T=1 \times 10^{-3} \mathrm{~s} \\ & \text { ecf incorrect } \Phi_{\max }, 0.25 T: \varepsilon=3 \times 1.71 \times 10^{-4} / 1 \times 10^{-3}=0.51 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$
10 d	(peak) emf is halved because rate of change of flux linkage has halved / reduced (owtte) one cycle takes $8 \mathrm{~ms} /$ period is doubled ACCEPT emf reduced / period increased for [1] NOT wavelength increases / doubles	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$


Question	Expected answer	Mark
11 a	$E_{\mathrm{k}}=m v^{2} / 2$ (eor)	1
	$E_{\mathrm{k}}=9.1 \times 10^{-31} \times\left(1.8 \times 10^{7}\right)^{2} / 2=1.47 \times 10^{-16} \mathrm{~J}$	1
	ecf incorrect $E_{\mathrm{k}}: \mathrm{eV}=E_{\mathrm{k}}$ (eor)	1
	$V=1.47 \times 10^{-16} / 1.6 \times 10^{-19}=920 \mathrm{~V}$	1
11 b i	$\operatorname{Bev}=m v^{2} / r$ and processing to obtain formula	1
11 b ii		1
	EITHER $E=\frac{1}{2} m v^{2}, v=\sqrt{\frac{2 E}{m}}$ OR $E=p^{2} / 2 m, p=m v$	
	processing to final formula	
11 c	circular track curves upwards smoothly in B field	1
	much larger radius of curvature (deflection < 90 ${ }^{\circ}$ )	1
	straight line where emerges from field e.g.	


Question	Expected answer	Mark
12 ai	nucleon number $=104$, proton number $=46$	1
12 a ii	EITHER   neutrons neutral so only interact with nucleus in a head-on collision OR   electrons are charged so scatter off nucleus without needing to get close   NOT just neutrons are neutral / electrons are charged, must also mention interaction with nucleus	1
12 b	$\begin{aligned} & \text { beta particle rate }=42 \times 10^{-9} / 1.6 \times 10^{-19}=2.6 \times 10^{11} \mathrm{~s}^{-1} \\ & \text { ecf : neutron rate }=2.6 \times 10^{11} \times 6=1.6 \times 10^{12} \mathrm{~Bq} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
12 c	number of half-thicknesses $=48 / 8.0=6$ (eor) transmission $=0.5^{6}=1.56 \times 10^{-2}$ or $1.6 \%$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
12 di	$5 \times 20 \times 10^{-3} \times 3=0.3 \%$ risk	1
12 dii	$\begin{aligned} & \text { neutron energy }=0.025 \times 1.6 \times 10^{-19}=4.0 \times 10^{-21} \mathrm{~J} \text { (eor) } \\ & \text { annual absorbed dose }=\text { total energy } \times Q / \text { mass } \\ & \text { total energy per year }=20 \times 10^{-3} \times 65 / 10=0.13 \mathrm{~J} \text { (eor) } \\ & \text { ecf: neutrons per year }=0.13 / 4.0 \times 10^{-21}=3.3 \times 10^{19} \\ & \text { neutrons per second }=3.3 \times 10^{19} / 3.2 \times 10^{7}=1.0 \times 10^{12} \mathrm{~Bq} \end{aligned}$	$\begin{array}{\|l} 1 \\ 1 \\ 1 \end{array}$


Question	Expected answer	Mark
13 ai	$\begin{aligned} & E=k Q / r^{2}(e o r) \\ & r=2.0 \times 10^{-2} \mathrm{~m} \\ & \text { ecf } r: Q=E r^{2} / k=3.0 \times 10^{6} \times\left(2.0 \times 10^{-2}\right)^{2} / 9.0 \times 10^{9}=1.3 \times 10^{-7} \mathrm{C} \\ & \text { ACCEPT correct reverse calculation for }[3] \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
13 a ii	$\begin{aligned} & V=k Q / r \\ & \text { ecf incorrect } Q, r: V=9.0 \times 10^{9} \times 1.3 \times 10^{-7} / 2.0 \times 10^{-2} \\ & V=6.0 \times 10^{4} \mathrm{~V} \\ & \left(1 \times 10^{-7} \mathrm{C} \text { gives } 4.5 \times 10^{4} \mathrm{~V} \text { for }[2]\right) \\ & \text { ACCEPT } 3.0 \times 10^{6} \times 0.02=6 \times 10^{4} \mathrm{~V} \text { for [2] } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$
13 bi	correct shape and symmetry, five lines at right angles to surfaces all arrows downwards	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
13 b ii	ecf incorrect field lines, at right angles to field lines	1
13 c	any of the following, maximum [4]   - alter $Q$ and/or $h$   - measure $Q$ with a coulomb meter   - note change of scales reading when sphere placed / removed   - use $W=\Delta m g$ to determine $F$ (accept $m$ for $\Delta m$ )   - suitable numerical or graphical test to verify an aspect of the relationship $F=k Q^{2} / 4 h^{2}$   - suitable numerical or graphical test to verify another / all aspect(s) of the relationship $F=k Q^{2} / 4 h^{2}$	4

## Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in Section B of the paper.

4 The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3 The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2 The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.

0 The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

## Physics B (Advancing Physics) mark schemes - an introduction

Just as the philosophy of the Advancing Physics course develops the student's understanding of Physics, so the philosophy of the examination rewards the candidate for showing that understanding. These mark schemes must be viewed in that light, for in practice the examiners' standardisation meeting is of at least equal importance.

The following points need to be borne in mind when reading the published mark schemes:

- Alternative approaches to a question are rewarded equally with that given in the scheme, provided that the physics is sound. As an example, when a candidate is required to "Show that..." followed by a numerical value, it is always possible to work back from the required value to the data.
- Open questions, such as the questions in section $C$ permit a very wide variety of approaches, and the candidate's own approach must be rewarded according to the degree to which it has been successful. Real examples of differing approaches are discussed in standardisation meetings, and specimen answers produced by candidates are used as 'case law' for examiners when marking scripts.
- Final and intermediate calculated values in the schemes are given to assist the examiners in spotting whether candidates are proceeding correctly. Mark schemes frequently give calculated values to degrees of precision greater than those warranted by the data, to show values that one might expect to see in candidates' working.
- Where a calculation is worth two marks, one mark is generally given for the method, and the other for the evaluation of the quantity to be calculated.
- If part of a question uses a value calculated earlier, any error in the former result is not penalised further, being counted as error carried forward: the candidate's own previous result is taken as correct for the subsequent calculation.
- Inappropriate numbers of significant figures in a final answer are penalised by the loss of a mark, generally once per examination paper. The maximum number of significant figures deemed to be permissible is one more than that given in the data; two more significant figures would be excessive. This does not apply in questions where candidates are required to show that a given value is correct.
- Where units are not provided in the question or answer line the candidate is expected to give the units used in the answer.
- Quality of written communication will be assessed where there are opportunities to write extended prose.


## ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

3. Please ensure that you use the final version of the Mark Scheme.

You are advised to destroy all draft versions.
4. Please mark all post-standardisation scripts in red ink. A tick $(\checkmark)$ should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ( $1 / 2$ ) should never be used.
3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.

```
x = incorrect response (errors may also be underlined)
^ = omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the same response)
sf = error in the number of significant figures
```

4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each double page should be ringed at the end of the question, on the bottom right hand side. These totals should be added up to give the final total on the front of the paper.
5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

$\begin{array}{\|l\|} \hline \text { Unit } \\ 2865 \end{array}$	Code	Session January	$\begin{array}{\|l\|} \hline \text { Year } \\ 2008 \end{array}$	Final standardisation version		
m   s   e   l   $\vdots$   NOT   ( )   ecf   AW   ora	= method mark   = substitution mark   = evaluation mark   = alternative and acceptable answers for the same marking point   = separates marking points   = answers which are not worthy of credit   = words which are not essential to gain credit   = (underlining) key words which must be used to gain credit   = error carried forward   = alternative wording   = or reverse argument					
Qn	Expected Answers				Marks	Additional guidance
(a)	$\begin{aligned} & \text { (i) distance }=2 \pi \times 1.50 \times 10^{11} \mathrm{~m}=9.4 \times 10^{11} \mathrm{~m} \checkmark \\ & v=9.4 \times 10^{11} \mathrm{~m} / 3.2 \times 10^{7} \mathrm{~s}=2.9 \times 10^{4} \approx 3 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1} \checkmark \\ & \text { (ii) } \mathrm{a}=\mathrm{v}^{2} / \mathrm{R}=\left(2.9 \times 10^{4}\right) / 1.5 \times 10^{11}=5.8 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-2} \\ & \approx 6 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-2} \checkmark \mathrm{~m} \checkmark \mathrm{e} \\ & \text { (iii) } \mathrm{Nkg}^{-1}=\left(\mathrm{kg} \mathrm{~m} \mathrm{~s}^{-2}\right) \mathrm{kg}^{-1}=\mathrm{m} \mathrm{~s}^{-2} \checkmark \mathrm{~m} \checkmark \mathrm{e} \end{aligned}$				2 2 2	not $\mathrm{R} / \mathrm{T}$   allow $3 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$   gives $6.0 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-2}$   ora
(b)	$1.989 \times 10^{30} \mathrm{~kg}(4 \mathrm{sf})$   Least accurate datum has 4 sf				1	
(c)	Realising that leap years every 1 year in 4 , including century years, means an extra 0.25 days year ${ }^{-1} \checkmark$ Orbital period slightly shorter than this, so need extra shorter (non-leap) year(s) $\checkmark$				,	Can answer by calculating ( $303 \times 365$ + $97 \times 366$ )/400 for $\checkmark \mathrm{m} V \mathrm{e}$
	Total:				10	
2   (a)	(Equal time) spacings closer meaning less volume owtte (in equal times) $\checkmark$				1	
(b)	(i) $\Delta$ drops $3.6,1.8,0.8,0.4 \checkmark$ ratios 2.0, 2.3, $2.0(0.5,0.4,05)$ so yes $\checkmark$   (ii) method of increasing flow as fraction of total volume e.g. larger hole, narrower container $\checkmark$ more division on the scale $\checkmark$ (allow different method of measurement of level)				2 2	at least 2 of the first 4 gaps any two valid points, e.g. two improvements or improvement + explanation
(c)	(i) $\varepsilon=17.0 \times 1.4 \times 10^{-23} \times 290=6.9 \times 10^{-20} \mathrm{~J} \approx 7 \times 10^{-20} \mathrm{~J}$ or $\varepsilon=15.9 \times 1.4 \times 10^{-23} \times 310=6.9 \times 10^{-20} \mathrm{~J} \approx 7 \times 10^{-20} \mathrm{~J} \checkmark$   (ii) $\mathrm{BF}=\mathrm{e}^{-\frac{\varepsilon}{k T}}=\mathrm{e}^{-15.9}=1.24 \times 10^{-7} \approx 3 \times 4.18 \times 10^{-8} \checkmark$   (iii) significant increase in number molecules with higher energy $\checkmark$   faster evaporation as greater fraction of molecules able to escape $\checkmark$				1	Must compare Scotland and Egypt
	Total:				9	


Qn	Expected Answers	Marks	Additional guidance
$\begin{array}{r} 3 \\ (\mathrm{a}) \end{array}$	constant ratio $\checkmark$   values 10.6, 10.5, 10.3, 10.1 ( $0.094,0.095,0.098$,   0.099 ) so not true as definite trend away from constant within precision of data $\checkmark$	2	(i) constant difference needs extrapolation to zero to confirm direct proportion
(b)	(i) $T=2.0 \mathrm{~s} \checkmark$   $2 \pi \sqrt{ } / / g=T \Rightarrow L=T^{2} g / 4 \pi^{2}=g / \pi^{2}=0.99 \mathrm{~m} \checkmark \mathrm{~m} \checkmark \mathrm{e}$   (ii) $L$ increases to $L \times(1+25 / 50000)=1.0005 L \checkmark$   $T \propto \sqrt{ } L \Rightarrow T=\sqrt{ } 1.0005 \times 2 \mathrm{~s}=2.00050 \mathrm{~s}$ so extra time is   $0.5 \mathrm{~ms} \checkmark$ Bald answer 0.0005 s is not enough	3 2	can calculate $T$ based on $L$   $=1.0005 \mathrm{~m}$ giving 1.0076 s . Allow $g=10 \mathrm{~N} / \mathrm{kg}$ giving $T=1.987 \mathrm{~s}$ or 9.81 $\mathrm{N} / \mathrm{kg}$ giving
	Total:	7	
(a)	(i) $1.0 \mathrm{~mm}=1 / 2 \lambda$ (as fundamental is N-A-N or A-N-A) $\checkmark$   (ii) $f=v / \lambda \checkmark=5500 / 2.0 \times 10^{-3}=2.8 \times 10^{6} \mathrm{~Hz}$	3	can label diagram
(b)	$\begin{aligned} & \text { (i) } E=V / d=5.0 / 1.0 \times 10^{-3}=5.0 \times 10^{3} \mathrm{Vm} \\ & \varepsilon=d_{\mathrm{p}} E=2.25 \times 10^{-12} \times 5.0 \times 10^{3} \mathrm{~V} \mathrm{~m}^{-1}=1.13 \times 10^{-8} \checkmark \\ & \Delta x=\varepsilon L=1.13 \times 10^{-8} \times 1.0 \times 10^{-3}=1.13 \times 10^{-11} \mathrm{~m} \checkmark \\ & \text { (ii) } \sigma=E \varepsilon=7.9 \times 10^{10} \times 1.1 \times 10^{-8} \\ & \quad=870 \checkmark \mathrm{~Pa} \text { or } \mathrm{N} \mathrm{~m} \mathrm{~m}^{-2} \checkmark \end{aligned}$	3 2	Watch for cancelling 1 mm omissions! $\varepsilon=1.13 \times 10^{-8}$   gives 890 Pa ; ecf incorrect $\varepsilon$
	Total:	8	
$\begin{array}{r} 5 \\ (\mathrm{a}) \end{array}$	(i) Nitrogen atom significantly more massive than hydrogen atom $\checkmark$   same momentum change on both, so velocity change of $N$ less so moves less in same time $\checkmark$   (ii) $\mathrm{H}-2$ double mass of $\mathrm{H}-1 \checkmark$   treating as mass on spring $\checkmark$ more mass means longer $T$ / smaller $f \checkmark$	2 3	Needs idea of cons. Of momentum / Newton III   Can use algebra
(b)	(i) identifies (both) stable positions at minima of potential energy curve $\checkmark$   (ii) X on either of the downhill slopes from the centre to a minimum $\checkmark$ force $=-$ gradient of line owtte	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Can explain in terms of work needed for displacement
	Total:	8	


Qn	Expected Answers	Marks	Additional guidance
6   (a)	$\begin{aligned} & \text { (i) } E=2.73 \times 1.6 \times 10^{-19} \mathrm{~J} \checkmark=4.4 \times 10^{-19} \mathrm{~J} \\ & f=E / h=4.4 \times 10^{-19} / 6.6 \times 10^{-34} \mathrm{~Hz}=6.6 \times 10^{14} \mathrm{~Hz} \\ & \lambda=c / f=3.0 \times 10^{8} / 6.6 \times 10^{14}=4.53 \times 10^{-7} \mathrm{~m}=450 \mathrm{~nm} \end{aligned}$   $\checkmark$ which is near the violet end of the spectrum $\checkmark$   (ii) Cannot put two measurements differing by factor of $10^{5}$ on same diagram.	4 1	(i) Must indicate or imply that 400 nm is the violet end of the spectrum.   (ii) Must make comparison of energy magnitudes.
(b)	$10^{7}$ years $\times 3.2 \times 10^{7}$ s/year $\times\left(3 / 10^{14}\right)=9.6 \mathrm{~s}$ in ten million years ora $\checkmark$   NB article/ question states 1 s in 10 million years so allow use of 1 million years in answer.	1	$2 \times 10^{14} \text { gives } 6.4$
(c)	(i) $9.2 \times 10^{9} / 5 \times 10^{6} \checkmark=1840$ $2^{10}=1024 \& 2^{11}=2048$ so need 11 stages (allow 10) $\checkmark$ (ii) $9192631770 / 5 \times 10^{6}=1838.5 \ldots$ which is not an exact power of 2 .	2 1	The mark for (ii) can be earned in (i), so mark both parts together. Allow repeated division by 2 in (i).
	Total:	9	
$7$   (a)	(i) $\Delta x=3.0 \times 10^{8} \times 1.0 \times 10^{-6}=300 \mathrm{~m} \checkmark$   (ii) $t=\Delta x . / c=10 / 3.0 \times 10^{8}=3.3 \times 10^{-8} s$ (so needs accuracy to nearest 10 ns ). $\checkmark \mathrm{m} \checkmark \mathrm{e}$	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	
(b)	(i) 128 bytes $=128 \times 8=1024$ bits $\checkmark$ time $=1024 / 1.024 \times 10^{6} \mathrm{~s}=1.0 \times 10^{-3} \mathrm{~s} \checkmark$   (ii) satellites move (significant distances during transmission of data)	$2$	
(c)	(i) more than one possible location if just two used $\checkmark$   (ii) Extra information to confirm data / increase accuracy   / 3D location	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	(ii) any sensible suggestion
	Total:	8	


Qn	Expected Answers	Marks	Additional guidance
$\begin{array}{r} 8 \\ (\mathrm{a}) \end{array}$	$40 \mathrm{~km} \mathrm{~h}^{-1}=40 \times 10^{3} / 60^{2}=11.1 \mathrm{~m} \mathrm{~s}^{-1} \approx 11 \mathrm{~m} \mathrm{~s}^{-1} \checkmark \mathrm{~m}$	2	
(b)	(i) $V=\pi \mathrm{t}^{2} h=\pi \times 1.0^{2} \times 11=35 \mathrm{~m}^{3} \vee \mathrm{~m} \vee \mathrm{e}$ $m=\rho V=1.2 \times 11=41 \mathrm{~kg} \checkmark$   (ii) Kinetic energy/s $=1 / 2 \times 41 \times 11^{2}=2500 \mathrm{~W} \checkmark \mathrm{~m} \checkmark \mathrm{e}$   (iii) Not all energy trapped by turbine / wind speed varies and is often less than $11 \mathrm{~m} \mathrm{~s}^{-1} /$ generator efficiency $<100 \%$ / air moves away $\checkmark \checkmark$	$\begin{aligned} & 3 \\ & 2 \\ & 2 \end{aligned}$	$11.11 \mathrm{~m} \mathrm{~s}^{-1}$ gives 42 kg 40 kg gives 2420 W Method must have $\mathrm{v}^{2}$ Energy loss for first mark, mechanism for second.
(c)	(i) By eye, $\mathrm{p}_{1}$ and $\mathrm{p}_{2}$ parallel to and proportionate in length to those on the diagram $\checkmark$   $\Delta \mathrm{p}$ completes triangle as shown, i.e. $\mathrm{p}_{2}$ is the resultant.   (ii) Force $=\Delta p / \Delta t \checkmark$   Apply conservation of momentum/Newton III to equate effect on air with (-) effect on blade. $\checkmark$	$2$   2	
	Total:	13	
$\begin{aligned} & 9 \\ & \text { (a) } \end{aligned}$	$\begin{aligned} & \text { (i) } \quad R=\rho L / A \quad \checkmark \Rightarrow L=R A / \rho \\ & L=8.0 \times(0.11 \times 10-3) 2 / 1.7 \times 10-8=17.9 \mathrm{~m} \approx 20 \mathrm{~m} \end{aligned}$ $\checkmark \mathrm{m} v e$   (ii) $I=V / R=1.0 / 8.0=0.125 \mathrm{~A} \checkmark \approx 130 \mathrm{~mA} \checkmark$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	Comparison needed
(b)	(i) 4 radial lines, roughly equally spaced $\checkmark$ Any two complete loops from N to S returning through back of magnet assembly $\checkmark$ correct direction on both $\checkmark$   (ii) $F=I L B=0.13 \times 18 \times 0.4=0.94 \mathrm{~N} \checkmark \mathrm{~m} \checkmark \mathrm{e}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	If only one diagram has field direction, accept that.   20 m gives 1.0 N
(c)	Destructive interference / waves out of phase   Second source is from back of loudspeaker $\checkmark$	2	Must imply two sets of waves: can suggest e.g. reflection off rear wall as source for second set Accept baffle vibrates and amplifies sound
(d)	Waves reflected off wall $\checkmark$ superpose /interfere constructively with waves directly from the loudspeaker	2	Allow phase change on reflection
	Total:	14	
	Quality of Written Communication	4	See next page

## QWC Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in the whole paper.
$4 \max \quad$ The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3 The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2 The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.
$0 \quad$ The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

## Grade Thresholds

## Advanced GCE Physics B (Advancing Physics) (3888/7888)

 January 2008 Examination Series
## Unit Threshold Marks

Unit		Maximum   Mark	A	B	C	D	E	U
$\mathbf{2 8 6 0}$	Raw	90	61	54	48	42	36	0
	UMS	100	80	70	60	50	40	0
$\mathbf{2 8 6 1}$	Raw	90	65	57	49	42	35	0
	UMS	110	88	77	66	55	44	0
$\mathbf{2 8 6 2}$	Raw	120	97	85	73	62	51	0
	UMS	90	72	63	54	45	36	0
$\mathbf{2 8 6 3 A}$	Raw	127	97	87	77	68	59	0
	UMS	100	80	70	60	50	40	0
$\mathbf{2 8 6 3 B}$	Raw	127	97	87	77	68	59	0
	UMS	100	80	70	60	50	40	0
$\mathbf{2 8 6 4 B}$	Raw	119	91	81	71	61	52	0
	UMS	110	88	77	66	55	44	0
$\mathbf{2 8 6 5}$	Raw	119	91	81	71	61	52	0
	UMS	110	88	77	66	55	44	0
	Raw	UMS	90	60	54	48	42	37
0	72	63	54	45	36	0		

## Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum   Mark	A	B	C	D	E	U
$\mathbf{3 8 8 8}$	300	240	210	180	150	120	0
$\mathbf{7 8 8 8}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	$\mathbf{U}$	Total Number of   Candidates
$\mathbf{3 8 8 8}$	10.6	29.5	58.0	81.6	96.3	100	379
$\mathbf{7 8 8 8}$	10.0	38.3	65.0	90.0	98.3	100	60

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

