Physics B (Advancing Physics)

Advanced GCE A2 7888

Mark Scheme for the Units

June 2008

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2008
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08708706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Physics B (Advancing Physics) (7888)

Advanced Subsidiary GCE Physics B (Advancing Physics) (3888)

MARK SCHEMES FOR THE UNITS

Unit/Content Page
2860 Physics in Action 1
2861 Understanding Processes 14
2863/01 Rise and Fall of the Clockwork Universe 23
2864/01 Field and particle Pictures 26
2865 Advances in Physics 33
Grade Thresholds 41

2860 Physics in Action

General advice to Assistant Examiners on the procedures to be used

YOU WILL BE REQUIRED TO UNDERTAKE 10 PRACTICE AND 10 STANDARDISATION SCRIPTS BEFORE STARTING TO MARK LIVE SCRIPTS.

1 The schedule of dates for the marking of this paper is very important. It is vital that you meet these requirements. If you experience problems then you must contact your Team Leader (Supervisor) without delay.

2 An element of professional judgement is required in the marking of any written paper. Candidates often do not use the exact words which appear in the detailed sheets which follow. If the physics is correct and also answers the question then the mark(s) should normally be credited. If you are in doubt about the validity of any answer then consult your Team Leader (Supervisor) by phone, the messaging system within SCORIS or e-mail.

3 Correct answers to calculations always gain full credit even if no working is shown. (The 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)

4 Some questions may have a 'Level of Response' mark scheme. Any details about these will be in the rationale, for this paper see $1 / 2 / 3$ style.

$1 / 2 / 3$ style allow full credit for a well annotated diagram if included:

1 will indicate a sensible attempt has been made with a little relevant physics / comment
2 will indicate the description is satisfactory, but may contain serious errors or omissions
3 will indicate the description is essentially correct but perhaps not totally complete, but is without gross errors

5 If an answer has been crossed out and no alternative answer has been written then mark the answer crossed out.

In addition to the award of 0 marks, there is a NR (No Response) option on SCORIS.

Award 0 marks

- if there is any attempt that earns no credit (including copying out the question or some crossed out working)

Award NR (No Response)

- if there is nothing written at all in the answer space

OR

- if there is any comment which does not in any way relate to the question being asked (eg 'can't do', 'don't know')
OR
- if there is any sort of mark which is not an attempt at the question (eg a dash, a question mark)

7 Abbreviations, annotations and conventions used in the detailed Mark Scheme.
/ = alternative and acceptable answers for the same marking point
(1) $=$ separates marking points
not = answers which are not worthy of credit
reject $=$ answers which are not worthy of credit
ignore $=$ statements which are irrelevant
allow $=$ answers that can be accepted
() = words which are not essential to gain credit

- = underlined words must be present in answer to score a mark
ecf = error carried forward
AW = alternative wording
ora $\quad=$ or reverse argument
8 Annotations: the following annotations are available on SCORIS.
$\checkmark \quad=$ correct response placed in script at point of award
$\mathbf{x} \quad=$ incorrect response placed in script at point where a marking point is lost or
gross error occurs
bod = benefit of the doubt
nbod = benefit of the doubt not given
ECF = error carried forward
$\wedge \quad=\quad$ information omitted (can usefully be placed on the question stem to indicate missing part of response)
FT $=$ not used on this paper
TV = trivial response below expected level
REP = repetition
RE = not used on this paper
CON = contradiction
SF = only penalise on questions indicated, on this paper we are not using SF penalty

Highlighting is also available to highlight any particular points on the script.
Once cleared for live marking; the following questions should be annotated with ticks (and other annotations) to show where marks have been awarded in the body of the text:

9 (biii) \& (c), 10 (c) if not NR, $0,3 / 3$
\& 10(d), 12(d) and 13(b all parts) if not NR or 0 .
Annotate BOD / CON / ECF etc. throughout at the point in the response where appropriate.

9 The Comments box
The comments box will be used by your PE to explain their marking of the practice scripts for your information. Please refer to these comments when checking your practice scripts. You should only type in the comments box yourself when you have an additional object of the type described in Appendix B of the Handbook for Assistant Examiners and Subject Markers.
Please do not use the comments box for any other reason.
Any questions or comments you have for your Team Leader should be communicated by phone, SCORIS messaging system or e-mail.

10 Please send a brief report on the performance of the candidates to your Team Leader (Supervisor) by the end of the marking period. The Assistant Examiner's Report Form (AERF) can be found on the Cambridge Assessment Support Portal. This should contain notes on particular strengths displayed, as well as common errors or weaknesses. Constructive criticisms of the question paper/mark scheme are also appreciated.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Expected Answers \& Marks \& Additional Guidance \\
\hline 1 \& \& \(\mathrm{As} \quad\) (1) \(\mathrm{JCC}^{-1}\) (1) \(\mathrm{AV}^{-1}\) (1) \& 3 \& \begin{tabular}{l}
not alternative equivalent units \(C\); \(V\); \(S\) \\
enforce \(\leftrightarrow\) candidates double headed arrows to swap posn.
\end{tabular} \\
\hline 2 \& a \& \[
\begin{aligned}
\& \frac{5}{\left(\text { alternatives }=2^{\text {bits }}\right) \quad 2^{5}=32(>26)} \\
\& \text { characters } x \text { bits character }{ }^{-1} \\
\& 10<\text { bits }<1000
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1 \\
\& 1
\end{aligned}
\] \& ```
bits = 5 not 25 not 2 }\mp@subsup{2}{}{5}=3
explained allow 2.7 = 26 allow counting alternatives to 32 / 31
not just 32 alternatives not just 2 }\mp@subsup{2}{}{4}=1
clear method allow numerical method
not characters > 200 ecf on bits from (a)
a correct bare estimate scores 1/2
``` \\
\hline 3 \& \& \(\left(18 \times 10^{6} \times 12 \times 25\right)=5.4 \times 10^{9}\left(\right.\) bits \(\left.\mathrm{s}^{-1}\right)\) \& 1 \& allow correct evaluation only \\
\hline 4 \& a

b \& | images of (very) distant objects at $f$ from lens / waves (or rays) from distant objects converge at $F$ |
| :--- |
| due to parallel rays (from point on object at $\infty$ )/ curvature of waves (from distant object) is zero / negligible compared to that added by lens |
| image position is behind CCD |
| image is at 16 mm behind lens / |
| 8 mm behind CCD |
| object and image at $2 f$ |
| a nearly symmetrical ray diagram by eye | \& 1

1

1

1 \& | AW accept broad range of rays / curvature / equations / diagrams approaches but only reward correct physics |
| :--- |
| not just image is at $\mathrm{f} / \mathrm{F} / \mathrm{CCD}$ |
| accept no discrimination between $f$ (focal length) and $F$ (principal focus) of lens if symbols are used |
| allow $u \approx \infty$ so $1 / u \approx 0(1)$ and $1 / v=1 / f / v=f$ for 2 marks |
| accept in words / diagrams not image is out of focus |
| explanation by correct calculation / quality words eg lens is unable to add enough curvature to form image on CCD allow calculations of $f$ from given $v$ and $u$ as reverse argument i.e. what $f$ for $u=-0.016 \mathrm{~m}$ and $v=0.008 \mathrm{~m}$ giving $f=5.3 \mathrm{~mm}$ | <br>

\hline
\end{tabular}

Section A

| Question |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 5 | a | $\begin{aligned} & \text { (e.m.f.) }=1.5 \pm 0.02(\mathrm{~V}) \\ & \text { (max current) }=560 \pm 5 \mathrm{~mA} \\ & r=\mid \text { gradient } \mid \\ & r=(\varepsilon-V) / I \\ & r=1.5 / 0.56 \end{aligned}$ <br> must get to $r$ as subject of a correct equation <br> 2.7 ( $\Omega$ tolerance $\pm 0.1$ on other graph values) | 1 <br> 1 <br> 1 <br> 1 | allow tolerance $\pm 1 / 2$ graph square not 1.45 V gross error allow 0.56 A if milli is crossed out <br> method allow any correct method including numerical if clear accept method mark only for $r=1.5 / \underline{560}$ <br> ignore $r=V / I$ <br> not $r=0.75 / 0.28$ i.e. from any single graph point but is incorrect method - this one happens to give the correct value <br> evaluation allow ecf on both values from (a) |
| 6 |  | (strength) property of material (not specimen) / (breaking stress) takes x-sectional area into account / is independent of dimensions of specimen / breaking force depends on dimensions of specimen / double area doubles force to break | 2 | Any two points AW <br> allow stress = force /(x-sectional) area or symbols for one weak mark <br> not strength depends on x-sectional area or force! allow strength / breaking stress is an intensive property allow breaking force is an extensive property |
| 7 |  | bass must reduce by 1 / 2 bars treble must increase by 1 or more bars | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | allow decrease on either/both of leftmost pair of bars allow increase on either/both of rightmost pair of bars ignore middle frequency bar |
|  |  | Total: Section A | 20 |  |


| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | a |  | 3 or more metal particles separate and randomly arranged <br> background matrix / long chain polymers (any orientation / coiling / alignment) | $1$ <br> 1 | must be labelled clearly as metal <br> not regularly arranged not all on top of polymer chains not labelled QTC particles <br> must be labelled clearly as matrix / chains / polymers allow shaded area labelled matrix with no chains not round / point polymer particles / only one chain accept aligned polymers / polymer grid no labels $=$ no marks |
|  | b | i | ( $\rho$ ) scale is logarithmic / goes up as $\times 100$ (per equal distance increment) | 1 | allow goes up in $\times 100$ units / constant multiples / constant factors allow goes up (linearly) in powers of 10 not just a times / factors scale / non-linear scale / scale is in powers of ten |
|  |  | ii | 12 | 1 | not $10^{12}$ |
|  | C | i | value from graph $\rho=10^{-2}(\Omega \mathrm{~m})$ $R=\rho L / A /=10^{-2} \times 10^{-3} /\left(3.6 \times 10^{-3}\right)^{2}$ <br> $0.77(\Omega)$ ecf on $\rho$ value | $1$ <br> 1 <br> 1 | allow any evidence even in otherwise incorrect calculations not $10^{-2}$ for $\sigma$ allow $\sigma=10^{2}$ <br> method allow correct equation for $R$ (in any arrangement) in symbols / words / numbers <br> evaluation |
|  |  | ii | weighing scales / force-meter / stress / strain gauge / pressure alarm sensor | 1 | allow any application involving stress / strain / force / pressure accept mass balance |
|  |  |  | Total Question 8 | 8 |  |

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Expected Answers \& Marks \& Additional Guidance \\
\hline 9 \& a \& \& \[
\begin{aligned}
\& \text { increases / rises / goes up } \\
\& 2.4 \pm 0.3 \mathrm{k} \Omega \\
\& \text { lowest / low / lower / small }
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1
\end{aligned}
\] \& allow any stated value or range \(\leq 1\left(\mathrm{~W} \mathrm{~m}^{-2}\right)\) accept even if units \(\mathrm{k} \Omega\) \\
\hline \& b \& i \& LDR and fixed resistor connected in series with battery \& 1 \& accept LDR symbol without circle but with arrows accept zig-zag resistor symbol accept ammeter in series but no other extra components allow any orientation or order allow this mark even if V meter in series not incomplete circuits not incorrect circuit symbols e.g. thermistor / general transducer / variable resistor / photodiodes / LEDs / fuse \\
\hline \& \& ii \& Voltmeter in parallel with fixed resistor \& 1 \& must be correctly positioned and labelled V (meter) allow ecf \(\vee\) meter around incorrect circuit symbol if clearly \(R_{\text {fixed }}\) (don't penalise symbol again) \\
\hline \& \& iii \& \begin{tabular}{l}
LDR and fixed resistor have same resistance for \(1 / 2\) battery voltage from divider \\
\((\) from graph R \()=2.3 \pm 0.05 \mathrm{k}(\Omega)\)
\end{tabular} \& 1
1

1 \& | AW complete correct reasoning for two marks |
| :--- |
| allow algebraic reasoning based on any correct resistance ratio $R_{1}$ / $R_{2}=1 / \quad R_{1} / R_{\text {total }}=1 / 2 \quad$ (1) being equal to the appropriate voltage ratio $=V_{1} / V_{2} /=V_{1} / V_{\text {total }}$ accept inverse ratio arguments if correct accept ratios as fractions / using: / numeric allow 1 mark for a correct potential divider equation for their circuit labels |
| 2 marks for correct value substitution in pot. Divider eq. allow one mark for getting as far as current $I=1.3 \mathrm{~mA}$ |
| evaluation tolerance $\pm 1 / 2$ a grid square for $k(\Omega)$ missing max 2 i.e. penalise once accept bare correct answer for 3 marks (see advice note 3 ) | <br>

\hline
\end{tabular}



| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | a | i | AB (1) CD (1) | 2 | one mark each allow BA \& DC |
|  |  | ii | BC | 1 | not two answers CON |
|  | b | i | 120 ( MPa) | 1 | not $120 \times 10^{6}$ ( MPa ) |
|  |  | ii | 0.0105 to 0.0106 | 1 | allow 1.05\% / 1.06\% |
|  | c |  | $\begin{aligned} E & =\sigma / \varepsilon \text { from an elastic region } \\ & =120 \times 10^{6} / 0.0015 \\ & =8 \times 10^{4}(\mathrm{MPa}) / 8 \times 10^{10} \mathrm{~Pa} \end{aligned}$ | $1$ <br> 1 <br> 1 | allow gradient of AB / DC i.e. clearly from either elastic region not just $E=\sigma / \varepsilon$ <br> allow any other correct graph values from either elastic region not ecf from (b) <br> allow ecf on incorrect values from elastic region accept all working in MPa if answer correct <br> not $130 \mathrm{MPa} / 0.012=1.1 \times 10^{4}(\mathrm{~Pa})$ scores $0 / 3$ |
|  | d |  | (arrangement of atoms) e.g. regularity / dislocations / lattice / close packed planes <br> (elastic region) bonds stretch and return (after stress is removed) <br> (plastic region) layers of atoms slip / slide over each other / better explanation using dislocation motion ideas | $1$ <br> 1 <br> 1 | AW throughout allow correct ideas from well labelled diagrams throughout not just layers of atoms <br> not any credit for answers only describing macroscopic level |
|  |  |  | Total Question 10: | 11 |  |


| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | a | i | current remains at zero / constant and then increases rapidly / exponentially / logarithmically (as p.d. increases) <br> changes at p.d. of 1.5 to $1.6 \mathrm{~V} \mathrm{/} \mathrm{threshold}$ | 1 1 | AW <br> allow increases suddenly / quickly / dramatically / not just increases <br> accept turn on voltage / activation voltage not until a certain point / voltage / or other general terms |
|  |  | ii | (at 50 mA ) p.d. is 2.3 V $(P=/ V)=120(\mathrm{~mW})$ rounded calculation | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | not 2.4 V <br> accept 115 mW <br> ecf on wrong voltage from graph (incl. 2.4 V ) |
|  |  | iii | (electron energy goes) into creating photons | 1 | allow light or heat / thermal not k.e. |
|  | b | i | If one LED fails then remainder function normally | 1 | AW allow other sensible answers allow circuit is low voltage so very safe to operate allow reverse argument (assuming series circuit) not so resistance is low / so voltage is equal |
|  |  | ii | 12.(1) (W) | 1 | ecf correct evaluation of $105 \times$ (aii) |
|  |  | iii | hot filaments produce large amounts of infra-red other colours from the visible spectrum need filtering out | $1$ $1$ | ```allow more heat not just less efficient not to raise temperature of filament (a negligible quantity)``` |
|  |  | iv | safety aspects - less down time for repair / economic aspects - cheaper to operate / environmental aspects / less global warming / faster response / more directional | 1 | any sensible suggestion AW accept lamp is not as efficient accept LED has lower energy consumption not easier to see |
|  |  |  | Total Question 11: | 10 |  |
|  |  |  | Total Section B: | 40 |  |


| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | a | i | e.g. PET scan of brain tumour | 0 | any useful image sets context no mark |
|  |  | ii | e.g. $\gamma$ rays consistent with chosen image $\begin{array}{ll} f=1.2 \times 10^{20} \mathrm{~Hz} & \text { must have units } \\ \lambda=2.4 \times 10^{-12} \mathrm{~m} & \text { must have units } \end{array}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | allow ultrasound / electron current in SEM / STEM etc. <br> appropriate to any e/m / ultrasound <br> allow $\pm 1$ order magnitude on sensible values of $f$ and $\lambda$ for that radiation bandwidth <br> e.g. ultrasound (around MHz and mm ) <br> allow for SEM / STEM e.g. for 10 kV electrons $\begin{aligned} & \lambda(=\mathrm{h} / \mathrm{mv}) \approx 10^{-11} \mathrm{~m} \\ & f\left(=E_{\text {kinetic }} / \mathrm{h}\right) \approx 10^{18} \mathrm{~Hz} \text { or wider energy values } \end{aligned}$ |
|  |  | iii | product correctly worked out e.g. $2.9 \times 10^{8}$ <br> units $\mathrm{m} \mathrm{s}^{-1}$ | $1$ <br> 1 | expect near light speed for $\mathrm{e} / \mathrm{m}$ radiation / sound speed in medium (about $1500 \mathrm{~m} \mathrm{~s}^{-1}$ ) / electrons around $10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ <br> allow ecf on penalised poor estimates for $f$ and $\lambda$ allow appropriate speed for radiation if $f$ and $\lambda$ blank <br> not only Hz m |
|  |  | iv | speed of the radiation / speed of e/m / sound | 1 | allow speed of light / speed of waves not just speed |
|  | b |  | e.g. helps doctors to locate and diagnose tumours and prepare treatment programme | 1 | use must be explicit and specific not trivial not e.g. taking x-ray photos / identifying health problems allow e.g. diagnosing broken bones using x-rays / monitoring foetal development / gender |

$\left.\begin{array}{|c|l|l|l|l|}\hline 12 & \text { c } & \begin{array}{l}\text { e.g. see some ideas from : O } \\ \text { ca tracer isotope / is } \\ \text { carried blood sugar / decays by positron emission / } \\ \text { positron annihilates with nearby electron / emits a } \\ \text { pair of } \gamma \text { photons / These are detected by scintillation } \\ \text { crystals / which emit visible photons / amplified by } \\ \text { photo-multiplier tubes / Time delay between } \\ \text { detection of anti-parallel photons / allows site of } \gamma \\ \text { emission to be computed / stored in computer } \\ \text { memory / A slice by slice representation of the brain } \\ \text { is built up by this tomographic technique. }\end{array} & 3 & 1 / 2 / 3 \text { style allow full credit for a well annotated diagram: }\end{array} \quad \begin{array}{l}1 \text { will indicate a sensible attempt has been made } \\ 2 \text { will indicate the description is satisfactory, but contains errors } \\ 3 \text { will indicate the description is essentially correct but perhaps not } \\ \text { totally complete - no gross errors }\end{array}\right\}$

| d | d | name of image process / basic idea e.g. noise removal / smoothing / edge detection / contrast stretch / brightness adjustment / false colour etc. <br> purpose / improvement relevant to example: e.g. clearer image by removing random noise pixels / softens boundaries spreads noise / emphasises boundaries / makes invisible details clearer / aids ease of viewing overly dark or bright images / emphasises certain pixel values / ranges <br> pixel value manipulation must be correct and relevant to their process: | 1 1 1 1 | not increase pixel density / magnification / digital zoom / resolution <br> e.g. tomograph images are built from a 3-dimensional array of pixel values, usually in 2-d slices. The usual processing technique is to add false colour. Pixel values within distinct ranges are ascribed a different colour e.g. active sites with pixel values in range 200-255 are coloured red, less active sites in range 150-199 are coloured yellow etc. Hence an immediately recognisable visual image scan is produced from the invisible $\gamma$ photon emissions. <br> e.g. noise removal - replace pixel value with median / mean / average of pixel and 8 neighbours <br> edge detection - subtract NSEW pixel values from $4 \times$ central pixel value <br> contrast stretch - map current pixel value range onto full range of pixel values 0 to 255 accept $x$ constant value <br> brightness adjustment - add or subtract constant number from pixel values <br> if more than one process mentioned, credit best single process as above |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total Question 12: | 13 |  |


| Question |  | Expected Answers | Marks | Additional Guidance |  | | |
|---|---|---|---|---|---|---|---|
| $\mathbf{1 3}$ | a |  | $\begin{array}{l}\text { example e.g. USB connection from PC to webcam } \\ \text { nature e.g. carrying image info }\end{array}$ | 1 | $\begin{array}{l}\text { need two descriptors for one mark to set context } \\ \text { don't worry about distinction between example / nature }\end{array}$ |
| allow email / text / image / sound / voice / fax / fibre optic / radio / tv / |  |  |  |  |  |
| mobile phone etc. |  |  |  |  |  |
| accept analogue / digital information |  |  |  |  |  |
| not just waves / electromagnetic / light / data or other vague |  |  |  |  |  |
| responses |  |  |  |  |  |$]$| b i |
| :--- |

\begin{tabular}{|c|c|c|c|c|}
\hline \& iii \& \begin{tabular}{l}
Two examples: e.g. sampling rate / frequency too low \\
insufficient binary levels / lack of resolution noise corruption during the reconstruction \\
added quality e.g. sampling \(f<2 \times f_{\text {max }}\) causes high floss sampling at low \(f\) causes aliasing quantisation errors explained / illustrated noise from voltage spike during reconstruction
\end{tabular} \& 1
1

1 \& | not just fewer samples |
| :--- |
| not noise / attenuation during digital transmission |
| third mark for quality description / diagram illustrating the nature of the errors / how they are introduced |
| e.g. showing loss of higher $f$ / introduction of spurious low $f$ |
| / quantisation error introduced by sampling labelled |
| allow full credit from well labelled diagrams | <br>

\hline C \& \& | e.g. (live webcam communications not possible) limiting video-conferencing (1) |
| :--- |
| These reduce the need to travel (1) and so reduce carbon pollution / global warming (1) | \& 3 \& | 1/2/3 style accept advantages / disadvantages credit answers with no physics content |
| :--- |
| 1 will indicate a sensible attempt has been made 2 will indicate the description is satisfactory, but contains errors 3 will indicate the description is essentially correct max 2 for different example than (a) or no example in (a) not any credit for general analogue / digital comparison | <br>

\hline \& \& Total Question 13: \& 13 \& <br>
\hline \& \& Quality of Written Communication \& 4 \& See notes on final page <br>
\hline \& \& Total Section C: \& 30 \& <br>
\hline
\end{tabular}

## QoWC Marking quality of written communication assess section C only

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in Section $C$ of the paper.
4 max The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3
The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2
The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1
The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.
$0 \quad$ The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

OR the candidate has written nothing in section $C$ of the paper.

## 2861 Understanding Processes

## General advice to Assistant Examiners on the procedures to be used

## YOU WILL BE REQUIRED TO UNDERTAKE 10 PRACTICE AND 10 STANDARDISATION SCRIPTS BEFORE STARTING TO MARK LIVE SCRIPTS.

1 The schedule of dates for the marking of this paper is very important. It is vital that you meet these requirements. If you experience problems then you must contact your Team Leader (Supervisor) without delay.

2 An element of professional judgement is required in the marking of any written paper. Candidates often do not use the exact words which appear in the detailed sheets which follow. If the physics is correct and also answers the question then the mark(s) should normally be credited. If you are in doubt about the validity of any answer then consult your Team Leader (Supervisor) by phone, the messaging system within SCORIS or e-mail.

3 Some questions may have a 'Level of Response' mark scheme. Any details about these will be in the rationale, for this paper see $1 / 2 / 3$ style.

1/2/3 style allow full credit for a well annotated diagram if included:
1 will indicate a sensible attempt has been made with a little relevant physics / comment
2 will indicate the description is satisfactory, but may contain serious errors or omissions
3 will indicate the description is essentially correct
4 If an answer has been crossed out and no alternative answer has been written then mark the crossed out answer.

5 In addition to the award of 0 marks, there is a NR (No Response) option on SCORIS.

## Award 0 marks

- if there is any attempt that earns no credit (including copying out the question or some crossed out working)


## Award NR (No Response)

- if there is nothing written at all in the answer space OR
- if there is any comment which does not in any way relate to the question being asked (eg 'can't do', 'don't know')
OR
- if there is any sort of mark which is not an attempt at the question (eg a dash, a question mark)

6 Abbreviations, annotations and conventions used in the detailed Mark Scheme.
/ = alternative and acceptable answers for the same marking point
(1) $\quad=$ separates marking points
not $=$ answers which are not worthy of credit
ignore $=$ statements which are irrelevant
allow $=$ answers that can be accepted
( ) = words which are not essential to gain credit

- = underlined words must be present in answer to score a mark
ecf $\quad=$ error carried forward
AW = alternative wording
ora $=$ or reverse argument
7 Annotations: the following annotations are available on SCORIS.
$\checkmark \quad=$ correct response placed in script at point of award
$x \quad=$ incorrect response placed in script at point where a marking point is lost or
gross error occurs
bod = benefit of the doubt
nbod = benefit of the doubt not given
ECF = error carried forward
$\wedge \quad=\quad$ information omitted (can usefully be placed on the question stem to indicate
missing part of response)
SF = only penalise on questions indicated, on this paper we are using SF penalty in Q 2(b).

Highlighting is also available to highlight any particular points on the script.
On the standardisation sample annotate all questions fully where the mark is not NR, 0 or a maximum value for the part question.

Once cleared for live marking; the following questions should be annotated with ticks (and other annotations) to show where marks have been awarded in the body of the text:

> 12(c)

8 The Comments box
The comments box will be used by your PE to explain their marking of the practice scripts for your information. Please refer to these comments when checking your practice scripts. You should only type in the comments box yourself when you have an additional object of the type described in Appendix B of the Handbook for Assistant Examiners and Subject Markers.
Please do not use the comments box for any other reason.
Any questions or comments you have for your Team Leader should be communicated by phone, SCORIS messaging system or e-mail.

9 Please send a brief report on the performance of the candidates to your Team Leader (Supervisor) by the end of the marking period. The Assistant Examiner's Report Form (AERF) can be found on the Cambridge Assessment Support Portal. This should contain notes on particular strengths displayed, as well as common errors or weaknesses. Constructive criticisms of the question paper/mark scheme are also appreciated.

| Abbreviations, annotations and conventions used in the Mark Scheme | m $=$ <br> s $=$ <br> e $=$ <br> $l$ $=$ <br> $\vdots$ $=$ <br> NOT $=$ <br> () $=$ <br> $\overline{\text { ecf }}$ $=$ <br> AW $=$ <br> ora $=$ | = method mark <br> = substitution mark <br> = evaluation mark <br> = alternative and acceptable answers for the same marking point <br> = separates marking points <br> $=$ answers which are not worthy of credit <br> = words which are not essential to gain credit <br> = (underlining) key words which must be used to gain credit <br> = error carried forward <br> = alternative wording owtte = or words to that effect <br> = or reverse argument |
| :---: | :---: | :---: |


| Qn | Expected Answers | Marks | Additional guidance |
| :---: | :---: | :---: | :---: |
| 1 (a) <br> (b) <br> (c) | $\begin{aligned} & \text { D } \checkmark \\ & A \checkmark \\ & D \vee \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ |  |
| 2(a) <br> (b) | $\begin{aligned} & 1 / 300000 \checkmark_{\mathrm{m}} \quad\left(=3.33 \times 10^{-6} \mathrm{~m}\right) \text { or }\left(10^{-}\right. \\ & \left.{ }^{3} / 300\right) \\ & \text { using } \lambda=\mathrm{d} \sin \theta \rightarrow 3.3 \times 10^{-6} \times \sin 11^{\circ} \checkmark_{\mathrm{m}}, \\ & \mathrm{~s} \\ & \text { acceptable answer range }=6.3 \times 10^{-7} \text { to } 6.4 \mathrm{x} \\ & 10^{-7}(\mathrm{~m}) \checkmark_{\mathrm{e}} \\ & \text { Sig fig penalty - lose second mark if more } \\ & \text { than } 3 \mathrm{sf.} \end{aligned}$ | 2 | Be wary of mistakes with units/orders of magnitude. May be done in stages. ora <br> No ecf allowed <br> For the award of both marks correct working must be seen. <br> First mark MUST show use of equation AND correct substitution of values. |
| 3(a) <br> (b) | $\begin{aligned} & \mathrm{s}=\left(1011 \times 10^{3}\right) / 3600 \checkmark_{\mathrm{m}, \mathrm{~s}} \\ &=280 \text { to } 281(280.83) \checkmark_{\mathrm{e}}\left(\mathrm{~ms}^{-1}\right) \\ & 280(\text { or } 300) / 1.4=200 \text { to } 214.3 \text { (range) (m } \\ &\left.\mathrm{s}^{-2}\right) \checkmark_{\mathrm{m}} \\ & 200 / 9.8 \checkmark_{\mathrm{m}}=20.4 \text { to } 22 \text { (range) } \end{aligned}$ | $2$ $2$ | ora <br> See possible range of acceptable answers, including use of $\mathrm{g}=10$. Look to award two method marks. |
| 4(a) (b) | $\lambda / v^{2}$ or $v^{2} / \lambda=\mathbf{a}$ constant $/ \lambda / v^{2}=k \quad \checkmark_{m}$ $6.0 \quad 5.75 \quad 5.88$ or $0.17 \quad 0.17 \quad 0.17 \checkmark_{\mathrm{e}}$ (inverse values) <br> conclusion consistent with outcome of arithmetic test | $2$ $1$ | test proposed may be implicit in the working. Test MUST be carried out on all 3 sets of data. <br> Zero marks for a test that was only carried out on two data sets. |


| Qn | Expected Answers | Marks | Additional guidance |
| :---: | :---: | :---: | :---: |
| $5(a)$ <br> (b) | $\begin{aligned} & 6.6 \times 10^{-34} \times 3.0 \times 10^{8} /\left(550 \times 10^{-9}\right) \checkmark_{\mathrm{m}, \mathrm{~s}} \\ & =3.6 \times 10^{-19}(\mathrm{~J}) \checkmark_{\mathrm{e}} \end{aligned}$ <br> Any two from three: $\checkmark \checkmark$ white light is a mixture of colours most red and blue (photons) absorbed green (photons) least absorbed or most reflected | $2$ <br> 2 | $\left(f=5.45 \times 10^{14} \mathrm{~Hz}\right)$ <br> Answer can be in table or after working. In table $10^{-19}$ not needed. |
| $6(a)$ <br> (b) | C (acceleration) $\checkmark$ <br> A (velocity) | 1 <br> 1 | , |
| $7(a)$ <br> (b) | $\begin{aligned} & \text { period }=36 / 4.5 \checkmark_{\mathrm{m}}=8(\mathrm{~s}) \checkmark_{\mathrm{e}} \\ & 72(\mathrm{~s}) \checkmark \end{aligned}$ | $2$ $1$ | 4.5 complete waves in 36 s . <br> ecf but can also be awarded independently of (a) |
|  | Section A TOTAL | 22 |  |

\begin{tabular}{|c|c|c|c|}
\hline Qn \& Expected Answers \& Marks \& Additional guidance \\
\hline \begin{tabular}{l}
8(a) \\
(i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
wavelength \(=0.8 \mathrm{~m} \checkmark\) \\
(using \(v=f \lambda\) ) \(320 \times 0.8 \checkmark_{\mathrm{m}, \mathrm{s}}=256\)
\[
\mathrm{v}_{\mathrm{e}}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)
\] \\
\(\mathbf{N}\) and \(\mathbf{A}\) in appropriate positions on Fig.8.1 \\
waves reflect at ends \(\checkmark\) AW superposition/interference occurs constructive and destructive explicitly linked to \(A\) and \(N\)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 1 \\
\& 2
\end{aligned}
\] \\
1 \\
3
\end{tabular} \& \begin{tabular}{l}
ecf \\
If more than one \(\mathrm{A}, \mathrm{N}\) given they must all be correct alternative/equivalent versions to be marked on merit
\end{tabular} \\
\hline \begin{tabular}{l}
(b)(i) \\
(ii)
\end{tabular} \& Any sensible energy type (eg internal, heat, kinetic, sound etc) or any sensible 'destination' (eg supports, inside the wire etc)
\[
\begin{aligned}
\& 5 \times 320=1600 \text { (vibrations) } \checkmark_{\mathrm{m}} \\
\& 1600 / 200=8 \quad \checkmark_{\mathrm{m}} \\
\& 0.75^{8}=0.1 \checkmark_{\mathrm{e}}
\end{aligned}
\] \& 1

3 \& Take care to follow logic of different approaches, credit appropriately. <br>
\hline \& Total \& 11 \& <br>

\hline | $\begin{gathered} 9 \\ \text { (a)(i) } \end{gathered}$ |
| :--- |
| (ii) | \& | sensible scales $\checkmark$ |
| :--- |
| accurate plot $\checkmark$ |
| best fit line $\checkmark$ (for the points plotted) |
| initially accelerating / speed increasing $\checkmark$ then reaches constant speed/terminal velocity $\checkmark$ reasoning based on either correct explanation of use of gradients or correct detailed description of physical situation (e.g balancing of forces) | \& 3 \& | Must be within the printed graph area. Inaccurate plots (eg shown by deviations from a smooth curve) can still be awarded best fit line mark |
| :--- |
| No numbers on scale gets $3^{\text {rd }}$ mark only |
| Credit 'decreasing rate of acceleration' as correct reasoning for third mark. | <br>


\hline (b)(i) \& | simple description of use of distance \& time measurements $\checkmark$ |
| :--- |
| specific statement relating to $80-120 \mathrm{~cm}$ and/or 3.4-4.2s $\checkmark$ | \& 2 \& Second marking point is a quality mark for recognising that the measurements are centred around the $x=100 \mathrm{~cm}$ point. <br>

\hline
\end{tabular}

| Qn | Expected Answers | Marks | Additional guidance |
| :---: | :---: | :---: | :---: |
| (ii) | at 100 cm , rate of change / speed /gradient is constant $\checkmark$ <br> at 40 cm rate of change / speed/gradient is changing | 2 | or average speed and 'speed' are same (at 100 cm ) and different (at 40 cm ) |
| Total |  | 10 |  |
| 10 <br> (a)(i) <br> (ii) <br> (iii) | ```horizontal component \(=5.0 \sin 30^{\circ} \checkmark(=\) 2.5) vertical component \(=5.0 \cos 30^{\circ} \checkmark \quad(=4.33)\) direction of (vertical component of) velocity reversed \(\checkmark\) velocity is a vector quantity/understanding of change from +ve to -ve direction (considering horizontal component) stating or using \(F=m a{ }^{\prime}\) \(F=\underline{0.046 \times(1.8-2.5)}\) \(\checkmark_{s}\) \(5.0 \times 10^{-3}\) \(=(-) 6.44 \checkmark_{e}(N)\)``` | 2 2 3 | or $5 \cos 60^{\circ}$ <br> or $5 \sin 60^{\circ}$ could use Pythagoras <br> accept ( $u-v$ ) ignore minus sign $\mathrm{a}=140 \mathrm{~ms}^{-2}$ Accept rate of change of momentum argument |
| (b) | $\begin{aligned} & \left(v_{\mathrm{H}}=\right) 3.3 \sin 25^{\circ}=1.39 \checkmark_{\mathrm{e}}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \Delta v=(-1.39-(2.5))=(-) 3.89 \checkmark_{\mathrm{e}}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & 3.89 / 0.7=5.6 \checkmark_{\mathrm{e}} \end{aligned}$ | 3 | or $3.3 \cos 65^{\circ}$ <br> or by $F=m \Delta v / \Delta t$ <br> giving $F=35.83(N)$ then $\text { (ratio }=\text { ) } 35.83 / 6.4=5.6$ <br> or by calculating and comparing accelerations No ecf within question |
|  | Total | 10 |  |
| $\begin{array}{r} 11 \\ (\mathrm{a})(\mathrm{i}) \end{array}$ <br> (ii) <br> (iii) | 6 phasors drawn tip to tail $\checkmark$ (approx same length \& joined together) resultant phasor arrow drawn correctly <br> 6 phasors drawn tip to tail $\checkmark$ (approx same length \& joined together) resultant phasor arrow drawn correctly, must be smaller than rpa in (a) $\checkmark$ <br> rpa is large for paths close to the direct path $\checkmark \quad$ probability of photons arriving $\alpha$ $(\mathrm{rpa})^{2} \checkmark$ | 2 2 2 | Penalise 1 mark for completely 'in phase' Accept detached arrow if consistent with phasor direction <br> Penalise 1 mark for not significantly out of phase. |



| Qn | Expected Answers | Marks | Additional guidance |
| :---: | :---: | :---: | :---: |
| (c) (d)(i) | eg using $s=1 / 2$ at $^{2} \checkmark_{m}$ rearrangement $a=$ $2 \mathrm{~s} / \mathrm{t}^{2} \quad \mathrm{~V}_{\mathrm{m}}$ <br> or $\mathrm{v}=\mathrm{u}+$ at rearrangement $\mathrm{a}=(\mathrm{v}-\mathrm{u}) / \mathrm{t}$; <br> or $v^{2}=u^{2}+2$ as rearrangement $a=\left(v^{2}-\right.$ <br> $0) / 2 \mathrm{~s}$ ) <br> credit two factors (reaction time/ parallax/etc as appropriate to method) $\checkmark \checkmark$ which would introduce uncertainties into the method | $2$ | Watch out for incorrect use of average velocity used as v-this can still get credit in (a) and (b) Award 2 marks for stating directly $\mathrm{a}=(\mathrm{v}-\mathrm{u}) / \mathrm{t}$ <br> not friction/air resistance. unless using the $\mathrm{F}=\mathrm{ma}$ approach. |
| (ii) | sensible precautions to take to reduce uncertainty/error, or improvement in technique / instrumentation. | 2 | Sensible suggestion for both, or quality answer for improving one method. |
| $\begin{aligned} & \text { Qo } \\ & \text { WC } \end{aligned}$ | Total <br> $\checkmark \checkmark \checkmark \checkmark$ | $\begin{gathered} 12 \\ 4 \end{gathered}$ |  |
|  | Section C TOTAL | 28 |  |

## QoWC Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in Section C of the paper.

4 max The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3 The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2 The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.
$0 \quad$ The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

## 2863/01 Rise and Fall of the Clockwork Universe

| Qn | Expected answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 1(a) } \\ & \text { 1(b) } \\ & \text { 1(c) } \end{aligned}$ | $\begin{aligned} & \hline s \checkmark \\ & J \\ & J \checkmark \\ & s^{-1} \checkmark \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ |  |
| $\begin{aligned} & \text { 2(a) } \\ & \text { 2(b) } \end{aligned}$ | $\begin{aligned} & m=p / v=3.5 / 45 \quad \checkmark=0.078 \\ & v=3.5 / 0.20=17.5 \checkmark \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & \text { accept } 0.077 \\ & 17.7 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{iff} \\ & 0.078 \mathrm{~kg} \text { used } \end{aligned}$ |
| $\begin{aligned} & \text { 3(a) } \\ & \text { 3(b) } \\ & \text { 3(c) } \end{aligned}$ | $\begin{aligned} & \mathrm{Q}=470 \times 10^{-6} \times 12 \checkmark=5.6(4) \mathrm{mC} \\ & \mathrm{Q}=470 \times 10^{-6} \times 10=4.7 \mathrm{mC} \\ & \Delta \mathrm{Q}=5.6-4.7 \checkmark \mathrm{mC}=0.9 \mathrm{mC} \end{aligned}$ <br> Rate of flow of charge/discharge or current $\text { falls (with time) } \checkmark \text { AW }$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | Check correct power of ten Or $\Delta \mathrm{Q}=\mathrm{C} \Delta \mathrm{V}$ or implicit $\checkmark$ Correct evaluation $\checkmark$ <br> Beware experimental error explanations Accept $I=V / R$ and $V$ falls $l=\Delta Q / \Delta t$ not sufficient |
| $\begin{aligned} & \text { 4(a) } \\ & \text { 4(b) } \end{aligned}$ | $\begin{aligned} & \text { speed }=2 \pi r / T=2 \times \pi \times 2.2 / 1.7 \checkmark= \\ & 8.1 \mathrm{~m} \mathrm{~s}^{-1} \\ & \mathrm{~F}=m v^{2} / r \checkmark=7.3 \times 64 / 2.2=210 \mathrm{~N} \checkmark \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | 212 N if $8.1 \mathrm{~m} \mathrm{~s}^{-1}$ used 219N/220N if carried forward from 4a. Equation can be implicit. <br> No sf penalty. Ecf allowed. No marks for centripetal acceleration alone |
| 5 | $\begin{aligned} & \text { Energy released }=150 \times 3350 \times 55 \checkmark \\ & =28 \mathrm{MJ} \checkmark \end{aligned}$ | 2 | Accept 27.6 MJ etc |
| 6(a) 6(b) | Eg. Lower viscosity (AW), higher temperature, larger hole size, hole lower in can, can of smaller diameter (same volume of liquid -> greater height of liquid) $\checkmark$ <br> Value from graph $=7.7 . \checkmark$ <br> (range: 7.0 -> 9.0 ) $\phi=0.693 / 7.7=0.09 \checkmark \mathrm{~s}^{-1} \checkmark$ | 1 3 | More dense acceptable <br> Other values can be found from graph - final answer in range $0.077-0.099$ |
| $7(a)$ $7 \text { (b) }$ | $5 \mathrm{~Hz} \checkmark$ <br> Peak at lower $f$ | $1$ | Ignore reference to amplitude |
| 8(a) | - Reduced drag $\checkmark$ as fewer collisions between rocket and particles in atmosphere $\checkmark$ <br> - Less fuel/energy needed $\checkmark$ as less air resistance/drag $\checkmark$ <br> - Greater acc/velocity $\checkmark$ as less air resistance/drag $\checkmark$ | 2 | Suggestion/explanation pairs needed for two marks. Do not accept ' 'friction'. |
| 8(b) | Uniform gradient $\checkmark$ | 1 | 'straight line' acceptable |
| 8(c) | $\begin{aligned} & \text { Using } \mathrm{mg} \Delta \mathrm{~h} \text { with const. } \mathrm{g} \checkmark: 3800 \times 9.7 \times 90 \times 10^{3} \\ & \checkmark=3.3 \times 10^{9} \\ & \text { OR: } \mathrm{m} \Delta \mathrm{~V}_{\mathrm{g}} \checkmark \quad \text { and correct calculation } \checkmark \end{aligned}$ | 2 | $3.32 \times 10^{9}$ for calc. <br> $3.34 \times 10^{9}$ from graph <br> Equation can be implicit |
| 8(d) | $\begin{aligned} & \text { Net force }=74 \times 10^{3}-(9.7 \times 3800) \\ & =37140 \mathrm{~N} \cdot \checkmark \mathrm{a}=37140 / 3800=9.8 \mathrm{~m} \mathrm{~s}^{-2} \checkmark \end{aligned}$ | 2 | Or more elegant method. |


| Qn | Expected answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: |
| 8(e) (i) | ```p.e. gain = k.e. loss. }\checkmark\mathrm{ Lower k.e. -> lower speed\checkmark OR: force acting towards Earth/weight\checkmark Opposes motion\checkmark``` | 2 |  |
| (ii) | 'Outside' atmosphere (2 marks max) <br> - only force is gravity. <br> - Passengers and craft experience same acceleration <br> - An object inside the craft will not be accelerated towards one region of the craft. <br> - No reaction force between craft and passengers <br> In thicker atmosphere (2 marks max) <br> - Collisions/air resistance with craft cause an accelerating/decelerating force <br> - Passengers do not experience this force inside the craft <br> - Passengers experience a different acceleration to that of the craft <br> - Passengers will be accelerated towards one region of the craft/passengers move 'forward' as craft slows down. | 2 | High quality of explanation of reappearance of weight on re-entry can gain 4 marks. |
| 9(a) | Acceleration towards eqm position.AW $\checkmark$ | 1 |  |
| 9(b) | Finding $f=1 / 2 \pi \times(k / m)^{0.5}$ clearly using equations given $\checkmark$ <br> Correct substitution $\checkmark$ evaluating to $0.83 \mathrm{~Hz} \checkmark$ | 3 | $a=5.5 \mathrm{~ms}^{-2}$ worth one mark. |
| 9(c) (i) | Sum of energies is $\sim 0.8 \mathrm{~J} \checkmark \mathrm{AW}$ | 1 | Obvious (possibly implicit) ref to KE and PE |
| (ii) | Total energy $=1 / 2 \mathrm{kA}^{2}=20.5 \times 0.04 \checkmark=0.82 \mathrm{~J} \checkmark$ OR: Two or more pairs values from graph $\checkmark$ and sum. | 2 | One mark for one summed pair |
| (d) | Total energy is proportional to $A^{2} \checkmark$ the amplitude has increased by a factor of $1.4,1.4^{2}$ is $2 \checkmark$ so energy will double. <br> OR: <br> $1.4 \times$ max amplitude gives $1.4 \times$ max velocity <br> $\checkmark$ which gives 2 x max k.e. | 2 | Can compare $0.20^{2}$ with $0.28^{2}$ for second mark. Arithmetic with no explanation gives one mark. |
| (e) | No change in total energy $\checkmark$ peak (energy) would decrease $\checkmark$ if oscillation (sufficiently) damped | 2 | No marks for amplitude. Accept pictorial explanation |


| Qn | Expected answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: |
| $\begin{array}{r} 10 \text { (a) } \\ \text { (i) } \end{array}$ | $\begin{aligned} & P V=n R T \checkmark->n=P V / R T=1.2 \times 10^{5} \times 1 / 8.3 \times 300 \\ & \checkmark=48.2 \mathrm{~mol} \end{aligned}$ | 2 | Clear working or own value. |
| (ii) | $48 \times 6.0 \times 10^{23} \checkmark=2.88 \times 10^{25}$ | 1 | 48.2 gives $2.89 \times 10^{25}$ |
| (b) | $\begin{aligned} & \mathrm{pV}=1 / 3 \mathrm{Nm} \mathrm{c} \\ & \mathrm{c} \\ & \mathrm{c}=(3 \mathrm{pV} / \mathrm{Nm})^{0.5} \\ & =\left(3 \times 1.2 \times 10^{5} \times 1 / 2.9 \times 10^{25} \times 3.3 \times 10^{-27}\right)^{0.5} \checkmark= \\ & 1939 \checkmark \end{aligned}$ | 2 | $\begin{aligned} & \mathrm{v}_{\text {rms }}=(3 \mathrm{kT} / \mathrm{m})^{0.5}= \\ & \left(3 \times 1.4 \times 10^{-23} \times 300 / 3.3 \times 10^{-}\right. \\ & \left.{ }_{27}\right)^{0.5} \quad 1950 \checkmark \end{aligned}$ <br> Can equate kinetic energy to kT giving $1600 \mathrm{~m} \mathrm{~s}^{-1}$ |
| (c) | $\begin{aligned} & \text { volume }=A v t=6.5 \times 10^{-19} \times 2000 \times 1 \\ & =1.3 \times 10^{-15} \checkmark \\ & \text { no. in volume } v=1.3 \times 10^{-15} \times 2.88 \times 10^{25} \\ & =3.7 \times 10^{10} \checkmark \end{aligned}$ | 2 | $\begin{aligned} & \text { Answer }=3.8 \times 10^{10} \text { if } 2.9 \times 10^{25} \\ & \text { is used } \end{aligned}$ |
| (d) | Eg: higher temp -> higher v -> more collisions (per second) or vice versa | 2 | State (higher temp) to correct conclusion gives $1^{\text {st }}$ mark, middle step gains second Need direction of change for two marks. |
|  | Eg: lower pressure/density ->fewer molecules $\mathrm{m}^{-3}$ /greater intermolecular distance <br> -> fewer collisions (per second) or vice versa | 2 | State (lower pressure) to correct conclusion gives $1^{\text {st }}$ mark, middle step gains second Don't award the same physics twice. |
| (e) | Many collisions give many chances to 'get lucky' <br> $\checkmark$ so give some particles sufficient energy to ionise <br> $\checkmark$ AW | 2 |  |
| $11 \text { (a) }$ (i) | Increase in wavelength of radiation $\checkmark$ | 1 | Not shift to red |
| (ii) | Wavelength increases as space expands $\checkmark$ light from more distant galaxies has been expanding for a longer time/distance $\checkmark$ AW | 2 | Can gain (ai) mark here Beware fudge |
| (b) | Values $/ \mathrm{s}^{-1} \times 10^{-18}: 2.21,2.17,2.20 \mathrm{~V}$ <br> Mean: either $2.2 \times 10^{-18}$ or $2.1 \times 10^{-18} \checkmark$ Valid explanation $\checkmark$ | 3 | 2 sf fine |
| (c) (i) | $1 / 2.2 \times 10^{-18}=4.5 \times 10^{17} \checkmark=1.4 \times 10^{10} \checkmark$ years | 2 |  |
| (ii) | - galaxies were not formed at the beginning of the Universe $\checkmark$ <br> - variation of Hubble constant/expansion rate $\checkmark$ <br> - variation in data $\checkmark$ | 1 |  |

QWC on 8 (a), 8 e(i) \& (ii), 10 (d), 11 (a)

## 2864/01 Field and particle Pictures

## Physics B (Advancing Physics) mark schemes - an introduction

Just as the philosophy of the Advancing Physics course develops the student's understanding of Physics, so the philosophy of the examination rewards the candidate for showing that understanding. These mark schemes must be viewed in that light, for in practice the examiners' standardisation meeting is of at least equal importance.

The following points need to be borne in mind when reading the published mark schemes:

- Alternative approaches to a question are rewarded equally with that given in the scheme, provided that the physics is sound. As an example, when a candidate is required to "Show that..." followed by a numerical value, it is always possible to work back from the required value to the data.
- Open questions permit a very wide variety of approaches, and the candidate's own approach must be rewarded according to the degree to which it has been successful. Real examples of differing approaches are discussed in standardisation meetings, and specimen answers produced by candidates are used as 'case law' for examiners when marking scripts.
- Final and intermediate calculated values in the scheme are given to assist the examiners in spotting whether candidates are proceeding correctly. Mark schemes frequently give calculated values to degrees of precision greater than those warranted by the data, to show values that one might expect to see in candidate's working.
- Where a calculation is worth two marks, one mark is generally given for the method, and the other for the evaluation of the quantity to be calculated.
- If part of a question uses a value calculated earlier, any error in the former result is not penalised further, being counted as error carried forward: the candidate's own previous result is taken as correct for the subsequent calculation.
- Inappropriate numbers of significant figures in a final answer are penalised by the loss of a mark, generally once per examination paper. The maximum number of significant figures deemed to be permissible is one more than that given in the data; two more significant figures would be excessive. This does not apply in questions where candidates are required to show that a given value is correct.
- Where units are not provided in the question or answer line the candidate is expected to give the units used in the answer.
- Quality of written communication will be assessed where there are opportunities to write extended prose.


## Advice to Examiners on the Annotation of Scripts

1 Please ensure that you use the final version of the Mark Scheme.
You are advised to destroy all draft versions.
2 Please mark all post-standardisation scripts in red ink. A tick $(\checkmark)$ should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. Ticks should not be placed in the righthand margin. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ( $1 / 2$ ) should never be used.

3 The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
$\times \quad=$ incorrect response (errors may also be underlined)
$\wedge \quad=$ omission of mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con $=$ contradiction (where candidates contradict themselves in the same response
sf $\quad=$ error in the number of significant figures
up =omission of units with answer
4 The marks awarded for each part question should be indicated in the right-hand margin. The mark total for each double page should be ringed at the bottom right-hand side. These totals should be added up to give the final total on the front of the paper.

5 In cases where candidates are required to give a specific number of answers, mark the first answers up to the total required. Strike through the remainder.

6 The mark awarded for Quality of Written Communication in the margin should equal the number of ticks under the phrase.

7 Correct answers to calculations should obtain full credit even if no working is shown, unless indicated otherwise in the mark scheme.

8 Strike through all blank spaces and pages to give a clear indication that the whole of the script has been considered.

The following abbreviations and conventions are used in the mark scheme:

| m | $=$ method mark |
| :--- | :--- |
| s | $=$ substitution mark |
| e | $=$ evaluation mark |
| / | $=$ alternative correct answers |
| ; | $=$ separates marking points |
| NOT | $=$ answers which are not worthy of credit |
| ( ) | $=$ words which are not essential to gain credit |
| $\overline{\text { ecf }}$ | $=$ (underlining) key words which must be used to gain credit |
| ora | $=$ error carried forward |
| eor | $=$ eviderse argument |

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
1 (a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{Bq} \\
\& \mathrm{Jkg}^{-1} \text { NOT Gy }
\end{aligned}
\] \& 1
1 \\
\hline 2 \& \begin{tabular}{l}
any of the following, maximum [2] \\
- stronger magnet \\
- reduced air gap \\
- shorter iron loop / magnetic circuit \\
- thicker / fatter core \\
- increase all dimensions \\
- use higher permeability / softer magnetic material in core NOT more turns of wire / increase rotation speed / larger or smaller core / laminated core / more current in the coil \\
ACCEPT permeance instead of permeability
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
\[
3 \quad(a)
\] \\
(b)
\end{tabular} \& \begin{tabular}{l}
all of the following for [1] \\
- same initial path (by eye) \\
- gets closer to the nucleus \\
- diverges from original path
\end{tabular} \& 1

1 <br>

\hline | 4 (a) |
| :--- |
| (b) | \& accept $\times$ as not being a tick $\checkmark$ (paper) is a poor conductor of flux / has low permeability / is not magnetic / puts a gap in (magnetic) circuit; ACCEPT air gap / low permeance so less flux / flux density / magnetic field / field lines / field strength; NOT weaker electromagnet NOT no / zero flux \& 1

1 <br>
\hline
\end{tabular}

| 5 | total dose equivalent $=0.05 \times 10^{-3} \times 120=6 \times 10^{-3} \mathrm{~Sv}$ risk $=6 \times 10^{-3} \times 3=1.8 \times 10^{-2} \%$ <br> (ACCEPT $1.8 \times 10^{-4}$ with no percent sign) one error for ecf.: $9 \times 10^{-3} \%, 3 \times 10^{-4} \%, 18 \%$ for [1] | 1 1 |
| :---: | :---: | :---: |
| 6 (a) <br> (b) <br> (c) | C <br> D <br> A can david act? | 1 1 1 |
| $7 \quad \text { (a) }$ <br> (b) | $\begin{aligned} & \text { mass loss }=0.018884 \times 1.66 \times 10^{-27}=3.13 \times 10^{-29} \mathrm{~kg} \\ & E=m c^{2}=3.13 \times 10^{-29} \times\left(3.0 \times 10^{8}\right)^{2}=\underline{2.8} \times 10^{-12} \mathrm{~J} \end{aligned}$ <br> correct method (calculate any mass change in kg , apply $E=m c^{2}$ ) correct answer <br> nuclei must get close (for reaction) / nuclear forces are short range large potential energy when nucleii are close / large amount of work done against (coulomb) repulsion <br> NOT the nuclei repel | 1 1 1 1 1 |
| 8 | left-hand links correct right-hand links correct | 1 1 |
| $9 \quad \text { (a) }$ | inside the core, all the way round, and not touching | 1 |
| 9 (b) (i) | sinusoidal waveform, correct period, constant amplitude all the way across (by eye) <br> lead or lag by $90^{\circ}$ (by eye) | 1 |
| (ii) | $\begin{aligned} & \varepsilon=\frac{d(N \Phi)}{d t} \\ & \text { area (under curve) }=\varepsilon d t=d(N \Phi) \text { (owtte) } \\ & \text { flux linkage goes from peak to zero (in first } 5 \mathrm{~ms} \text { ) } \end{aligned}$ | 0 1 1 |



\begin{tabular}{|c|c|c|}
\hline 11 (a)

(b)

(c)(i)

(c)(ii) \& | $n=3$ |
| :--- |
| momentum-wavelength relationship: eg $p=\frac{h}{\lambda}$ |
| wavelength-n relationship: $\lambda=2 d / n$ |
| substitution (and manipulation): $E=\frac{(n h / 2 d)^{2}}{2 m}=\frac{n^{2} h^{2}}{8 m d^{2}}$ |
| $E=n^{2} \times\left(6.6 \times 10^{-34}\right)^{2} / 8 \times 9.1 \times 10^{-31} \times\left(0.30 \times 10^{-9}\right)^{2}$ |
| $E=n^{2} \times 6.65 \times 10^{-19} \mathrm{~J}$ and correctly evaluated once |
| line drawn at $4 \times 6.65 \times 10^{-19}=27 \times 10^{-19} \mathrm{~J}$ (by eye) |
| line drawn at $9 \times 6.65 \times 10^{-19}=\mathbf{6 0 \times 1 0 ^ { - 1 9 }} \mathrm{J}$ (by eye) |
| ACCEPT correct lines with no calculation for [3] $\begin{aligned} & E=h f, f=c / \lambda \\ & E=h c / \lambda=6.6 \times 10^{-34} \times 3.0 \times 10^{8} / 500 \times 10^{-9}=4(.0) \times 10^{-19} \mathrm{~J} \end{aligned}$ |
| smaller than any difference of energy levels / energy gap photons can only be absorbed if they match the difference between energy levels | \& 1

1
1
1
1

1
1
1
1
1
1
1 <br>

\hline 12 (a) \& | ${ }_{92}^{235} U+{ }_{0}^{1} n \rightarrow 4{ }_{0}^{1} n+2{ }_{46}^{116} P d$ |
| :--- |
| four neutrons on rhs, one neutron on Ihs, with correct symbols proton number of uranium 92 (IGNORE the rest) | \& 1 <br>

\hline $\begin{array}{rr}12 & \text { (b)(i) } \\ \\ & \text { (ii) } \\ \\ \text { (c) }\end{array}$ \& ```

$$
V=k Q / r
$$

$$
Q=46 e\left(=7.36 \times 10^{-18} \mathrm{C}\right)
$$

$$
V=9.0 \times 10^{9} \times 46 \times 1.6 \times 10^{-19} / 1.5 \times 10^{-14}=\underline{4.4 \times 10^{6} V}
$$

$$
E=Q V
$$

$$
\text { ecf incorrect } V: E=46 \times 1.6 \times 10^{-19} \times 4.4 \times 10^{6}=3.24 \times 10^{-11} \mathrm{~J}
$$

$$
\text { ecf incorrect } E: E=3.24 \times 10^{-11} / 1.6 \times 10^{-19} \mathrm{~J}=2.0 \times 10^{8} \mathrm{eV}
$$

$$
\text { ecf: } 4 \mathrm{MV} \text { gives } 2.94 \times 10^{-11} \mathrm{~J} \text { and } 1.8 \times 10^{8} \mathrm{eV} \text { for [3] }
$$

each fission must trigger one other fission (on average)
EITHER
neutrons may be lost before they reach another uranium nucleus
OR
absorbed by something else
OR
fail to trigger a fission when absorbed
OR
going too fast to be absorbed

``` & 0
1
1
1
1
1

1
1 \\
\hline
\end{tabular}

\section*{Marking quality of written communication}

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in Section B of the paper.

4 The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3 The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2 The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.

0 The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

\section*{2865 Advances in Physics}

\section*{Physics B (Advancing Physics) mark schemes - an introduction}
- Just as the philosophy of the Advancing Physics course develops the student's understanding of Physics, so the philosophy of the examination rewards the candidate for showing that understanding. These mark schemes must be viewed in that light, for in practice the examiners' standardisation meeting is of at least equal importance.
- The following points need to be borne in mind when reading the published mark schemes:
- Alternative approaches to a question are rewarded equally with that given in the scheme, provided that the physics is sound. As an example, when a candidate is required to "Show that..." followed by a numerical value, it is always possible to work back from the required value to the data.
- \(\quad\) Open questions, such as the questions in section \(C\) permit a very wide variety of approaches, and the candidate's own approach must be rewarded according to the degree to which it has been successful. Real examples of differing approaches are discussed in standardisation meetings, and specimen answers produced by candidates are used as 'case law' for examiners when marking scripts.
- \(\quad\) Final and intermediate calculated values in the schemes are given to assist the examiners in spotting whether candidates are proceeding correctly. Mark schemes frequently give calculated values to degrees of precision greater than those warranted by the data, to show values that one might expect to see in candidates' working.
- Where a calculation is worth two marks, one mark is generally given for the method, and the other for the evaluation of the quantity to be calculated.
- If part of a question uses a value calculated earlier, any error in the former result is not penalised further, being counted as error carried forward: the candidate's own previous result is taken as correct for the subsequent calculation.
- Inappropriate numbers of significant figures in a final answer are penalised by the loss of a mark, generally once per examination paper. The maximum number of significant figures deemed to be permissible is one more than that given in the data; two more significant figures would be excessive. This does not apply in questions where candidates are required to show that a given value is correct.
- Where units are not provided in the question or answer line the candidate is expected to give the units used in the answer.
- Quality of written communication will be assessed where there are opportunities to write extended prose.

\section*{Advice to Examiners on the Annotation of Scripts}

1 Please ensure that you use the final version of the Mark Scheme.
You are advised to destroy all draft versions.
2 Please mark all post-standardisation scripts in red ink. A tick \((\checkmark)\) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded.

3 The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
```

x = incorrect response (errors may also be underlined)
^ = omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the same
response)
sf = error in the number of significant figures

```

4 The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each double page should be ringed at the end of the question, on the bottom right hand side. These totals should be added up to give the final total on the front of the paper.

5 In cases where candidates are required to give a specific number of answers, (eg 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.

6 Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)

7 Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.

8 An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.
\begin{tabular}{|c|c|c|}
\hline Abbreviations, annotations and conventions used in the Mark Scheme & \begin{tabular}{l}
m \\
s \\
e \\
\(l\) \\
\(\vdots\) \\
NOT \\
(\\
\hline \begin{tabular}{l}
ecf \\
AW \\
ora
\end{tabular} \\
\hline
\end{tabular} & \begin{tabular}{l}
= method mark \\
= substitution mark \\
= evaluation mark \\
= alternative and acceptable answers for the same marking point \\
= separates marking points \\
= answers which are not worthy of credit \\
= words which are not essential to gain credit \\
= (underlining) key words which must be used to gain credit \\
= error carried forward \\
= alternative wording owtte \(=\) or words to that effect \\
= or reverse argument
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Qn & Expected Answers & Marks & Additional guidance \\
\hline \begin{tabular}{l}
\[
1 \text { (a) }
\] \\
(b)
\end{tabular} & \begin{tabular}{l}
(i) transverse \({ }^{\checkmark}\) \\
(ii) dark bit gets light/changes \(\checkmark\); \\
happens twice in the rotation/dark-light change happens when rotated by \(90^{\circ}\) \\
(i) compass indicates magnetic \(N \checkmark\) geographic \(N\) is different \(\checkmark\) \\
(ii) Difference in direction slight in Europe further S owter \(\checkmark\) \\
Comparison of angles \(\checkmark\) \\
(iii) realising that vertical component is significant \(\checkmark\); needle pointing down will stick/ not free to rotate owtte \(\checkmark\)
\end{tabular} & 1
2
2
2 & \begin{tabular}{l}
Angles can be inferred from distances between poles and to Europe. \\
First mark is 'components', second is 'consequence'
\end{tabular} \\
\hline & Total: & 9 & \\
\hline \begin{tabular}{l}
\[
2(a)
\] \\
(b) \\
(c)
\end{tabular} & \begin{tabular}{l}
One similarity: eg results in force on appropriate object, can be represented by field lines, both vector quantities \(\checkmark\) \\
One difference: eg \(E\) acts on all charges, \(B\) only on moving charges \(\checkmark\) \\
loop through \(C \checkmark\); \\
loop through E \(\checkmark\); \\
\(N\) pole \& \(S\) pole along axis \(A B \checkmark\) \\
Compass lies along flux line (could be drawn) \(\checkmark\); Solid (iron) is better 'conductor' of flux than air \(\checkmark\); Flux lines take shortest path through hole \(\checkmark\); (any two points)
\end{tabular} & 2
3

2 & \begin{tabular}{l}
Answer must be about field not cause of field \\
Complete loops, roughly symmetrical left/right, not crossing axis \(A B\) - loops should follow arrows. Ignore arrows added by candidates. \\
Allow ideas of attractive force to continent.
\end{tabular} \\
\hline & Total: & 7 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Qn & Expected Answers & Marks & Additional guidance \\
\hline 3 (a) & \begin{tabular}{l}
\[
\begin{aligned}
& \text { Correct choice/use of } F=\frac{G M m}{R^{2}} \text { or } g=\frac{G M}{R^{2}} \checkmark \\
& M=\frac{R^{2} F}{G m}=\frac{\left(6.4 \times 10^{6}\right)^{2} \times 9.8(\mathrm{ecf})}{6.7 \times 10^{-11} \times 1}=5.99 \times 10^{24} \mathrm{~kg} \\
& \approx 6 \times 10^{24} \mathrm{~kg} \checkmark \mathrm{~s} \checkmark \mathrm{e}
\end{aligned}
\] \\
(i) \(V=\frac{4}{3} \pi R^{3}=\frac{4}{3} \pi \times\left(3.5 \times 10^{6}\right)^{3}=1.8 \times 10^{20} \mathrm{~m}^{3}\) \(\approx 2 \times 10^{20} \mathrm{~m}^{3} \checkmark\) \\
(ii) \(M=\rho V=11000 \times 1.8 \times 10^{20}=2.0 \times 10^{24} \mathrm{~kg}\)
\[
\begin{aligned}
& V_{\text {(crust }+ \text { mantie) }}=1.0 \times 10^{21}-1.8 \times 10^{20}=8.2 \times 10^{20} \\
& \mathrm{~m}^{3} \checkmark \\
& M=6.0 \times 10^{24}-2.0 \times 10^{24}=4.0 \times 10^{24} \mathrm{~kg} \checkmark \\
& \rho=4.0 \times 10^{24} / 8.2 \times 10^{20}=4900 \mathrm{~kg} \mathrm{~m}^{-3} \checkmark
\end{aligned}
\]
\end{tabular} & 3

1
1
3 & \begin{tabular}{l}
In (ii), use of \(2 \times 10^{20} \mathrm{~m}^{3}\) gives \(2.2 \times 10^{24} \mathrm{~kg}\) \\
e.c.f from (b) if necessary. \(2 \times 10^{20} \mathrm{~m}^{3}\) and 2.2 \(\times 10^{24} \mathrm{~kg}\) give \(4750 \mathrm{~kg} \mathrm{~m}^{-3}\)
\end{tabular} \\
\hline & Total: & 8 & \\
\hline 4 (a) & \begin{tabular}{l}
Any reference to change in speed \(\checkmark\) \\
Any stated difference between P \& S waves (eg \(S\) transverse \& \(P\) longitudinal, \(P\) faster than \(S) \checkmark\); Effect related to change in mantle properties (egstiffness or density) with depth \(\checkmark\)
\end{tabular} & 3 & Mark (i) and (ii) as one block of 3 marks \\
\hline (b) & \begin{tabular}{l}
(i) \(v_{S}=\sqrt{\frac{E}{\rho}}=\sqrt{\frac{5.0 \times 10^{10}}{3200}}=3950 \mathrm{~m} \mathrm{~s}^{-1} \approx\) \(4000 \mathrm{~m} \mathrm{~s}^{-1} \checkmark\) \\
(ii) \(v_{\mathrm{s}} \uparrow \Rightarrow\) ratio \(E / \rho \uparrow \checkmark\) \\
\(E\) must have a greater percentage increase than \(\rho\) for this to be true.
\end{tabular} & 1
2 & ratio \(E / \rho\) determines \(v \checkmark\) reason for greater fractional change in \(E \checkmark\) \\
\hline (c) & \begin{tabular}{l}
\[
v_{P}=\sqrt{\frac{7}{3}} \times 4000=6110 \mathrm{~m} \mathrm{~s}^{-1} \approx 6100 \mathrm{~m} \mathrm{~s}^{-1} \vee \mathrm{~m}
\]
ve \\
Sig Fig error applies for \(>3\) s.f.
\end{tabular} & 2 & Can do arithmetically with E, \(\rho\) from (b)(i). Using \(3950 \mathrm{~m} \mathrm{~s}^{-1}\) [from (b)] gives \(6000 \mathrm{~m} \mathrm{~s}^{-1}\). \\
\hline (d) & \begin{tabular}{l}
(i) normal drawn along radius (judge by eye) \(\checkmark\); angles indicated clearly \\
(ii) slowing down at boundary \(\checkmark\); \\
speed change must imply a different material \(\checkmark\)
\end{tabular} & 2 & 'at boundary' shows abrupt change. Allow 'as it enters the core'. \\
\hline & Total: & 12 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Qn & Expected Answers & Marks & Additional guidance \\
\hline (c) & \begin{tabular}{l}
(i) Any reasonable two factors, eg pressure of gas, mass/weight of car, temperature of gas, volume of vessel, area of piston. \\
(ii) Suggestion \(\checkmark\) and explanation \(\checkmark\) eg gas at higher pressure; greater resistance to increase in pressure/smaller vessel; pressure increases more rapidly \\
(iii) \(p V=n R T\) implies \(p V=\) constant if \(T\) does not change. \(\checkmark\)
\[
\begin{aligned}
& 9 \quad \times 10^{5} \times 1.0 \times 10^{-3}<3.0 \times 10^{5} \times 0.75 \times 10^{-3} \\
& \mathrm{~m}^{3}
\end{aligned}
\] \\
so \(n R T\) has increased, meaning \(T\) has increased \(\checkmark \mathrm{m} V \mathrm{e}\)
\end{tabular} & \begin{tabular}{l}
2 \\
2 \\
2
\end{tabular} & \(\checkmark\) per factor. Allow 'density of gas' on grounds of higher \(p\) increases \(\rho\) for air. \\
\hline & Total: & 17 & \\
\hline \multicolumn{2}{|l|}{Quality of Written Communication: use pages 2-6. Criteria are on the following page} & 4 & \\
\hline
\end{tabular}

\section*{QWC Marking quality of written communication}

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in the whole paper.

4 max The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3 The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2 The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.
\(0 \quad\) The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

\section*{Grade Thresholds}

\section*{Advanced GCE Physics B (Advancing Physics) (3888/7888) June 2008 Examination Series}

Unit Threshold Marks
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Unit } & \begin{tabular}{c}
Maximum \\
Mark
\end{tabular} & A & B & C & D & E & U \\
\hline \multirow{2}{*}{\(\mathbf{2 8 6 0}\)} & Raw & 90 & 62 & 54 & 46 & 39 & 32 & 0 \\
\cline { 2 - 9 } & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow{2}{*}{\(\mathbf{2 8 6 1}\)} & Raw & 90 & 62 & 55 & 48 & 41 & 35 & 0 \\
\cline { 2 - 9 } & UMS & 110 & 88 & 77 & 66 & 55 & 44 & 0 \\
\hline \multirow{2}{*}{\(\mathbf{2 8 6 2}\)} & Raw & 120 & 97 & 85 & 73 & 62 & 51 & 0 \\
\cline { 2 - 9 } & UMS & 90 & 72 & 63 & 54 & 45 & 36 & 0 \\
\hline \multirow{2}{*}{\(\mathbf{2 8 6 3 A}\)} & Raw & 127 & 98 & 88 & 78 & 68 & 58 & 0 \\
\cline { 2 - 9 } & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow{2}{*}{\(\mathbf{2 8 6 3 B}\)} & Raw & 127 & 98 & 88 & 78 & 68 & 58 & 0 \\
\cline { 2 - 9 } & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow{2}{*}{\(\mathbf{2 8 6 4 B}\)} & Raw & 119 & 91 & 81 & 71 & 62 & 53 & 0 \\
\cline { 2 - 9 } & UMS & 110 & 88 & 77 & 66 & 55 & 44 & 0 \\
\hline \multirow{2}{*}{\(\mathbf{2 8 6 5}\)} & Raw & 119 & 91 & 81 & 71 & 62 & 53 & 0 \\
\cline { 2 - 9 } & UMS & 110 & 88 & 77 & 66 & 55 & 44 & 0 \\
\cline { 2 - 9 } & Raw & UMS & 90 & 61 & 55 & 49 & 43 & 37 \\
\hline
\end{tabular}

\section*{Specification Aggregation Results}

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & \begin{tabular}{c}
Maximum \\
Mark
\end{tabular} & A & B & C & D & E & U \\
\hline \(\mathbf{3 8 8 8}\) & 300 & 240 & 210 & 180 & 150 & 120 & 0 \\
\hline \(\mathbf{7 8 8 8}\) & 600 & 480 & 420 & 360 & 300 & 240 & 0 \\
\hline
\end{tabular}

The cumulative percentage of candidates awarded each grade was as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & A & B & C & D & E & \(\mathbf{U}\) & \begin{tabular}{c}
Total Number of \\
Candidates
\end{tabular} \\
\hline \(\mathbf{3 8 8 8}\) & 24.3 & 43.9 & 63.3 & 79.6 & 91.0 & 100 & 6942 \\
\hline \(\mathbf{7 8 8 8}\) & 32.3 & 54.0 & 73.5 & 88.2 & 97.3 & 100 & 5166 \\
\hline
\end{tabular}

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553```

