GCE

Physics B (Advancing Physics)

Advanced GCE 2864/01
Field and Particle Pictures

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Q	expected answer	mark	additional guidance
1a	T	1	
1b	V	1	
2	neutron	1	
3	$\begin{aligned} & E=k q / r^{2} \text { (eor) } \\ & 1.2 \times 10^{10} \mathrm{~N} \mathrm{C}^{-1} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
$4 a$ $4 b$	arrow through X pointing to centre of conductor. increasing distance between equipotentials with increasing distance from the conductor (for same p.d.)	1 1	
$5 a$ $5 b$	$\begin{aligned} & \text { flux }=6.3 \times 10^{-4} / 420=1.5 \times 10^{-6} \mathrm{~Wb} \\ & \text { ecf: } B=1.5 \times 10^{-6} / 2.6 \times 10^{-5} \\ & =5.8 \times 10^{-2} \mathrm{Wbm}^{-2} \\ & \text { emf }=6.3 \times 10^{-4} / 5.0 \times 10^{-3}=0.13 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	ecf: 6.3×10^{-4} gives 24 Wb [1] correct method [1]

,	Mark Schem			June 2010
6	$\begin{aligned} & V_{p} / V_{\mathrm{s}}=N_{\mathrm{p}} / N_{\mathrm{s}} \text { (eor) } \\ & V_{\mathrm{s}}=22 \mathrm{~V} \\ & f=50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		
$7 a$ 7 7	2*wleves:	1 1		
	$\begin{aligned} & 10^{-18} \\ & 10^{-14} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		
$9 a$ $9 b$ 90	N and ΔN have no units, $1 / \Delta t$ is s^{-1} $\begin{aligned} & \lambda=\underline{2.3} \times 10^{-5} \mathrm{~s}^{-1} \\ & N=1.6 \times 10^{9} \end{aligned}$	1 1 1	accept $\lambda=\frac{\Delta N}{N \Delta t}=\frac{1}{\Delta t}$ $2 \times 10^{-5} \mathrm{~s} \text { gives } 1.9 \times 10^{9}$	

Q	expected answer	mark	additional guidance
11a	$\begin{aligned} & Q=I t, Q=n e \text { (eor) } \\ & n=70 \times 10^{-12} / 1.6 \times 10^{-19}=4.4 \times 10^{8} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$4.4 \times 10^{\text {? }}$ for [1]
11bi	$\begin{aligned} & E=m c^{2}=8.2 \times 10^{-14} \mathrm{~J} \\ & 8.2 \times 10^{-14} / 1.6 \times 10^{-19}=5.1 \times 10^{5} \mathrm{~J} \text { (eor) } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept reverse calculation: 900 MeV gives $1.4 \times 10^{-10} \mathrm{~J}$
11bii	$\begin{aligned} & p=9.0 \times 10^{8} \times 1.6 \times 10^{-19} / 3.0 \times 10^{8} \\ & =4.8 \times 10^{-19} \mathrm{~N} \mathrm{~s} \\ & \text { ecf: } \lambda=h / p=6.6 \times 10^{-34} / 4.8 \times 10^{-19}=1.4 \times 10^{-15} \mathrm{~m} \end{aligned}$	1 1	not use of $E=h f, c=f \lambda$ $p=3.0 \mathrm{Ns}$ gives $2.2 \times 10^{-34} \mathrm{~m}$ for [1]
11biii	minimum of pattern at 25° $\begin{aligned} & \lambda=d \sin \theta \\ & d=1.4 \times 10^{-15} / 0.42=3.3 \times 10^{-15} \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	ecf on angle and λ
11c	proton is three quarks; (higher energy) means smaller wavelength (and increases resolution)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	

Q	expected answer	mark	additional guidance
12ai	gamma photons are not completely absorbed by water, but beta particles are.	1	must refer to both particles
12aii	$\begin{aligned} & \text { d.e }=6 \times 10^{-3} \times 600=3.6 \mathrm{~Sv} \\ & \text { ecf: } \text { risk }=3.6 \times 3=11 \% \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept 0.11 with no units
12aiii	any two of these suggestion / explanation pairs, $[1+1]$ each place astronauts further away; less chance of absorbing a photon;	4	ignore dose / radiation / sieverts / grays ...
	put stores/shielding in the way; to absorb photons; reduce reactor power; to reduce rate of emission of photons;		not lead / concrete shield
12bi	nucleus splitting into two (or more fragments)	1	accept atom
12bii	$\begin{aligned} & 206 \mathrm{MeV}=3.3 \times 10^{-11} \mathrm{~J} \text { (eor) } \\ & n=7.0 \times 10^{3} / 3.3 \times 10^{-11}=2.1 \times 10^{14} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ecf incorrect E in joules so 206 J gives 34 for [1]
12biii	any three of the following, [1] each collide with moderator/carbon/water; to slow them down; increasing probability of fission; absorbed by control rods; to establish one new fission from each previous one (owtte);	4	ignore references to chain reaction

Q	expected answer	mark	additional guidance
13ai	$\begin{aligned} & \text { neutron number }=138 \text { (eor) } \\ & \text { mass }=3.784 \times 10^{-25} \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	look for 2 d.p. allow ecf on incorrect neutron number
13aii	work/energy is required to separate particles; because of attractive forces between nucleons; energy related to mass by $E=m c^{2}$	1 1	accept reverse argument
		1	
13bi	length of standing wave is half a wavelength / $4 \times 7.1 \times 10^{-15}=2.8 \times 10^{-}$ ${ }^{14} \mathrm{~m}$	1	
13bii	$\begin{aligned} & p=h / \lambda \text { (eor) } \\ & p=2.3 \times 10^{-20} \mathrm{Ns} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { accept } 2.4 \times 10^{-20} \\ & 3 \times 10^{-14} \mathrm{~m} \text { gives } 2.2 \times 10^{-20} \mathrm{~m} \end{aligned}$
13biii	$\begin{aligned} & v=p / m=3.5 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1} \\ & E_{\mathrm{k}}=0.5 m v^{2}=4.0 \times 10^{-14} \mathrm{~J} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ecf from incorrect v $3 \times 10^{-14} \mathrm{~m}$ gives $3.6 \times 10^{-14} \mathrm{~J}$ $2.8 \times 10^{-14} \mathrm{~m}$ gives $4.1 \times 10^{-14} \mathrm{~J}$
13c	idea of all paths for a quantum object allows possibility of particle being outside nucleus	1	accept collisions with other nucleons raise it to a higher energy state
	QWC	4 Marks	

QoWC Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in Section B of the paper.

4 max The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3 The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2 The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.

0 The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

