Oxford Cambridge and RSA

GCE

Physics B (Advancing Physics)

Unit G492: Understanding Processes/Experimentation and Data Handing Advanced Subsidiary GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

1. These are the annotations, (including abbreviations), including those used in scoris, which are used when marking

Annotation	Meaning
BP	Blank Page - this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response.
BOD	Benefit of doubt given
CON	Contradiction
E	Incorrect response
ECF	Error carried forward
FT	Follow through
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
A	Omission mark
RE	Rounding error
SF	Error in number of significant figures
P	Correct response
AE	Arithmetic error
S	Wrong physics or equation

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
reject	Separates marking points
not	Answers which are not worthy of credit
IGNORE	Answers which are not worthy of credit
ALLOW	Answers that can be accepted
$\mathbf{()}$	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ecf	Alternative worried forward
AW	Or reverse argument
ORA	

3. The following questions should be annotated with ticks, crosses and carets to show where marks have been awarded in the body of the text: 8bii
10bii
12c
12d
13aii
13aiv
14biii
14 c
4. Do not penalise excessive significant figures anywhere except Q14(b)(iii). Unit errors are covered in Q9(a)(i).

Question	Answer	Marks	Guidance
1 (a)	Js^{-1}	1	
(b)	$\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$	1	
2 (a)	B	1	
(b)	C	1	
(c)	A	1	
(d)	C	1	
3 (a)	1	1	
(b)	10^{-4}	1	
4	$2^{\text {nd }}$ box and no others	1	.
5 (a)	\mathbf{B} and \mathbf{H}	1	
(b)	E: arrow at 3 o'clock (1); G: arrow between 10 and 11 o'clock (1)	2	allow one mark if both E and H are mirror images of correct arrows
(c)	 or clockwise combination.	1	Needs to show the addition of three tip-to-tail arrows forming equilateral triangle (by eye). Reject a right-angled triangle; reject 3 arrows in star formation.
6 (a)	speed: evidence of scale drawing or trig. / Pythagoras (1); answer of $61 \mathrm{~m} \mathrm{~s}^{-1}(1)$; direction: angle of 35° or 55° correctly indicated (1); E of $S(1)$ or equivalent, e.g. bearing 145°;	4	a bald $61 \mathrm{~m} \mathrm{~s}^{-1}$ gets both marks (± 3 for scale drawing) labelled angle on diagram in range $33-37^{\circ}$ gets both marks $4^{\text {th }}$ mark not awarded if no angle/incorrect angle given ecf from speed
(b)	$35 \mathrm{~m} \mathrm{~s}^{-1}(1)$ (towards the) west or equivalent, e.g. bearing $270^{\circ}(1)$	2	(If wind not E-W, any southerlyish wind with westerly component of $35 \mathrm{~m} \mathrm{~s}^{-1}$ is acceptable) allow ecf from part (a)
7 (a)	$\begin{aligned} & 1 \times 590 \times 10^{-9} \mathrm{~m}=d \sin \left(18.2^{\circ}\right)(1) ; \\ & d=590 \times 10^{-9} \mathrm{~m} / \sin \left(18.2^{\circ}\right)=1.89 \times 10^{-6} \mathrm{~m}\left(\approx 2 \times 10^{-6} \mathrm{~m}\right) \\ & (1) \mathrm{m} ;(1) \mathrm{e} \end{aligned}$	2	Watch for $590 \times 10^{-9} \mathrm{~m} \times \sin \left(18.2^{\circ}\right)=1.84 \times 10^{-7} \mathrm{~m}$ which gets 0.
(b)	$\begin{aligned} & \text { largest } \theta=90^{\circ} / \sin \theta=1 \\ & \text { so } \lambda=d \sin \theta / 3=1.89 \times 10^{-6} \mathrm{~m} / 3=630 \mathrm{~nm} \end{aligned}$	1	$d=2 \times 10^{-6} \mathrm{~m}$ gives 667 nm
	Section A total	22	

Question	Answer	Marks	Guidance
$8 \quad$ (a) (i)	From diagram, radius $=14 \mathrm{~mm} / 70 \mathrm{~mm} \times 35=7 \mathrm{~m}(1)$; Area $=3 \times \pi \times 7^{2}=462 \mathrm{~m}^{2}(1)$	2	accept radius range $6-9 \mathrm{~m}$ Ecf own radius for $2^{\text {nd }}$ mark but watch out for incorrect method using area of triangular base which gets 0 .
(a) (ii)	$\begin{aligned} & \text { In } 1 \mathrm{~s}, V=2.5 \mathrm{~m} \mathrm{~s}^{-1} \times 500 \mathrm{~m}^{2}=1250 \mathrm{~m}^{3}(1) ; \\ & m=V_{\rho}=1250 \mathrm{~m}^{3} \times 1030 \mathrm{~kg} \mathrm{~m}^{-3}=1.29 \times 10^{6} \mathrm{~kg}(1) \end{aligned}$	2	Accept ecf own area in (a) $462 \mathrm{~m}^{2}$ gives $1155 \mathrm{~m}^{3}(1)$; and $1.19 \times 10^{6} \mathrm{~kg}$ (1)
(b) (i)	$E_{\mathrm{k}}=1 / 2 \times 1.29 \times 10^{6} \mathrm{~kg} \times\left(2.5 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}=4.03 \times 10^{6} \mathrm{~J}(4 \mathrm{MJ})(1) ;$	1	Needs evidence of calculation $E=1 / 2 \times 1.29 \times 10^{6} \times(2.5)^{2}=4 \times 10^{6}$ J or a calculated answer (with no working) of 3.1 MJ (from $1 \times$ $10^{6} \mathrm{~kg}$) or 4.023 MJ (from unrounded answer to aii)
(b) (ii)	friction / electrical resistance in turbine/generator \& wiring (1); causes turbines/generators/some energy dissipated as heat/sound (1); turbine blades don't trap all water/water passing through turbine circle not slowed down to 0 (1); so water retains some kinetic energy (1); front turbines will disturb flow to one at back (1); so less energy extracted at back (1)	4	QWC: 4 marks not awarded unless two separate factors are clearly and separately discussed. This means that 4 marks does require a clear structure, e.g. columns, paragraphs.
	Total	9	
$9 \quad$ (a) (i)	$\begin{aligned} & f=E / h=3 \times 10^{-15} \mathrm{~J} / 6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}=4.55 \times 10^{18} \mathrm{~Hz} \mathrm{(1);} \\ & \lambda=c / f=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} / 4.55 \times 10^{18} \mathrm{~Hz} \\ & =6.6 \times 10^{-11} \mathrm{~m}=66 \mathrm{pm}(1) \end{aligned}$	2	Or: recall of $E=h c / \lambda$ (1); substitution \& evaluation (1)
(a) (ii)	$\begin{aligned} & \text { output energy in } 1 \mathrm{~s}=0.5 / 100 \times 12 \times 10^{3} \mathrm{~J}=60 \mathrm{~J}(1) \text {; } \\ & N=60 \mathrm{~J} / 3 \times 10^{-15} \mathrm{~J}=2.0 \times 10^{16}(1) \end{aligned}$	2	Watch for use of 50% which loses $1^{\text {st }}$ mark but can get $2^{\text {nd }}$ mark for FT (gives 2.0×10^{18})
(a) (iii)	most of the 12 kW is dissipated inside the instrument and would damage it/start a fire (1)	1	answer needs to recognise that this power would damage the tube
(b) (i)	$\begin{aligned} & v=\sqrt{ }(2 E / m)=\sqrt{ }\left(2 \times 7.0 \times 10^{-17} \mathrm{~J} / 9.1 \times 10^{-31} \mathrm{~kg}\right) \\ & =\sqrt{ }\left(1.54 \times 10^{14} \mathrm{~J} \mathrm{~kg}^{-1}\right)=1.24 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}(1) \mathrm{m} ;(1) \mathrm{e} \end{aligned}$	2	Watch for incorrect use of λ from ai gives 1.09×10^{7}
(b) (ii)	$\begin{aligned} \lambda & =h / m v=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s} /\left(9.1 \times 10^{-31} \mathrm{~kg} \times 1.24 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}\right) \\ & =5.85 \times 10^{-11} \mathrm{~m}=\left(58 \times 10^{-12} \mathrm{~m}\right)(1) \end{aligned}$	1	Using $1 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ gives 73 pm
(b) (iii)	$E_{\mathrm{k}} \propto v^{2} \Rightarrow v^{2} \downarrow 4 \times \Rightarrow v \downarrow \sqrt{ } 4 \times=2 \times$ (to half of answer in (i)) (1); $\lambda \propto 1 / v \Rightarrow \lambda \uparrow$ by the same ratio as the velocities (1)	2	Accept recalculation (b) (i) (1) \& (ii) (1) $E_{\mathrm{k}} \downarrow \Rightarrow v \downarrow \Rightarrow \lambda \uparrow$ without numbers gets (1) Reject a bald answer 'doubles' without explanation.
	Total	10	

Question	Answer	Marks	Guidance
12 (a) (i)	2.1 to 2.3 squares $=4.2$ to 4.6 V	1	
(a) (ii)	1 cycle in 4 divisions $\Rightarrow T=8 \mathrm{~ms}(1)$; $f=1 / T=125 \mathrm{~Hz}(1)$	2	If '8' seen assume 8 ms meant and award mp1
(b)	$0.1 \times 20 \mathrm{~ns}=2 \times 10^{-9} \mathrm{~s}$ (1)	1	
(c)	Advantages: Great range of voltages can be used for many different input p.d.s (1); Excellent time resolution can analyse fast-changing signals (1); Values of amplitude and period can be easily obtained wave form easy to see and (1) Can plot rapid changes owtte because electrons have small mass (1) Disadvantages: Only repeated signals can be displayed because it needs the signal to be redrawn on the screen continually (1); Screen resolution limited because lacks minor divisions (1)	2	Award marks only for correct explanations of advantages \& disadvantages Must have one advantage and one disadvantage. Do not award marks for unexplained quotes from the article, e.g. 'screen display has limited precision' NOT 'low inertia' (In article)
(d)	large computer memory (1); needed because large amounts of data captured by cro sweep(1); sensors with rapid response times (1); needed because cro signal changes rapidly/has small time resolution (1) memory/processors with rapid response times (1); needed because sensor output changes rapidly/has small time resolution (1)	4	Any two pairs. $1^{\text {st }}$ mark is for describing a necessary development, which could be quoted from the article. $2^{\text {nd }}$ mark must be an interpretation of the article, not a straight quote; it. must be an explanation in terms of what a cro trace could capture and which the digital storage oscilloscope must copy.
	Total	10	

Question	Answer	Marks	Guidance
13 (a) (i)	$24000 \mathrm{~Wh} / 35 \mathrm{~Wh} \mathrm{~kg}^{-1}=686 \mathrm{~kg}$ (> 500 kg) (1)m; (1)e	2	
(a) (ii)	Car: mass increase will reduce the acceleration/increase the force needed for the (same) acceleration (1); also increases energy required to accelerate / climb hills (1); Forklift: makes it more stable / less prone to tip (1) Idea of low centre of mass (1)	3	Do NOT credit any reference to fuel Accept increasing braking distance / increasing friction Accept correct discussion of moments. 3 out 4 marking points QWC is clear organisation and use of appropriate terms
(a) (iii)	20% of $50 \mathrm{~kW}=10 \mathrm{~kW}=10000 \mathrm{~J}$ in $1 \mathrm{~s}(1) \mathrm{m}$; (1)e	2	
(a) (iv)	decreased range or increased frequency of re-charging (1); battery will overheat (1); this will increase self-discharge (1)	2	2 from 3 marking points
(b) (i)	$\begin{aligned} & a=27 \mathrm{~m} \mathrm{~s}^{-1} / 15.4 \mathrm{~s}=1.75 \mathrm{~m} \mathrm{~s}^{-2}(1) ; \\ & F=m a=1170 \mathrm{~kg} \times 1.75 \mathrm{~m} \mathrm{~s}^{-2}=2050 \mathrm{~N}(\approx 2 \mathrm{kN})(1) \end{aligned}$	2	
(b) (ii)	$\begin{aligned} & \Delta E_{\mathrm{k}}=1 / 2 m v^{2}=0.5 \times 1170 \mathrm{~kg} \times\left(27 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}=426000 \mathrm{~J}(1) ; \\ & P=426000 \mathrm{~J} / 15.4 \mathrm{~s}=27700 \mathrm{~W}(\approx 1 / 2 \text { of } 49 \mathrm{~kW})(1) \end{aligned}$	2	$\text { or } v_{\text {mean }}=27 \mathrm{~m} \mathrm{~s}^{-1} / 2=13.5 \mathrm{~m} \mathrm{~s}^{-1}(1) \text {; }$ $P=F v=2050 \mathrm{~N} \times 13.5 \mathrm{~m} \mathrm{~s}^{-1}=27700 \mathrm{~W}$ (1) but must use mean velocity otherwise zero marks Using 2 kN gives 27000 W with this approach.
(b) (iii)	$t=120 \mathrm{~km} / 80 \mathrm{~km}$ hour $^{-1}=1.5$ hours (1); $16 \mathrm{kWh} / 1.5$ hours $=10.67 \mathrm{~kW}=11 \mathrm{~kW}(1)$	2	
	Total	15	

Question		Answer	Marks	Guidance
14 (a)	(i)	(variation in) human reaction time is the limiting factor	1	accept other reasonable suggestions Repeats are varying at the first decimal place
(a)	(ii)	uncertainty in end and start time is now divided by 10/reduces \% uncertainty in T values	1	Allow 'can measure longer time interval with greater accuracy'
(a)	(iii)	same percentage uncertainty/divide 0.1 by 10 (1)	1	
(a)	(iv)	$\begin{aligned} & T_{\text {min }}=1.09 \mathrm{~s} \&=1.11 \mathrm{~s} \mathrm{so} 1.188<T^{2}<1.232(1) ; \\ & T_{\text {mean }}^{2}=1.21 \text { and } \Delta T^{2}=1.232-1.21=0.02(1) \end{aligned}$	2	both are method marks accept $T_{\text {mean }}^{2}$ to upper or lower limit T^{2} accept doubling percentage error in T; percentage error in $T=$ $0.91(1) ; \Rightarrow$ percentage error in T^{2} doubles to $1.8 \Rightarrow \Delta T^{2}=(1.8 \times$ $1.21) / 100=0.022=0.02$ to 1 s.f. (1)
(b)	(i)	T^{2} values of $0.36 \mathrm{~s}^{2} \& 0.62 \mathrm{~s}^{2}(1)$; correct plotting (1)	2	Ignore incorrect / absent values for T
(b)	(ii)	$T^{2}=\frac{4 \pi^{2}}{g} L(1) ;$ relate to line equation $y=m x(+c)(1)$	2	First mark for algebraic manipulation. Allow $2^{\text {nd }} \mathrm{mp}$ for showing gradient $=T^{2} / L\left(=4 \pi^{2} / g\right)$
(b)	(iii)	best-fit line drawn (1); gradient correctly determined using triangle with ΔL at least 0.1 m (1); $g=4 \pi^{2} /$ gradient calculated (1)	3	if data for points not on line used, this mark is not awarded Penalise >3 sf
(c)		advantages: (much) longer T reduces uncertainty ΔT (1); \% uncertainty in L decreases (1) more precise determination of e.g. central point of swing (1); greater range of lengths to increase reliability/validity (1); disadvantages: practical difficulty of working with 3 m pendulum in lab.(1); uncertainty in length ΔL will increase as L longer than metre rule (1); long pendulum more susceptible to draughts/air resistance/wobble (1)	3	any 3 allow all advantages or all disadvantages 'Wobble' includes departure from 2D motion, i.e. acting as conical pendulum
		Total	15	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

A
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

