GCE

Physics B (Advancing Physics)

Unit G494: Rise and Fall of the Clockwork Universe
Advanced GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in Scoris

Annotation	Meaning
BP	Blank Page - this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response.
[-u0]	Benefit of doubt given
[4\%	Contradiction
3	Incorrect response
[5]	Error carried forward
\square	Follow through
[W]	Not answered question
-	Benefit of doubt not given
FOT	Power of 10 error
-	Omission mark
\square	Rounding error
\square	Error in number of significant figures
\checkmark	Correct response
[1]	Arithmetic error
?	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
(1)	alternative and acceptable answers for the same marking point
reject	Separates marking points
not	Answers which are not worthy of credit
IGNORE	Answers which are not worthy of credit
ALLOW	Answers that can be accepted
$\mathbf{()}$	Words which are not essential to gain credit
-	Error carried forward
AW	Orternative wording
ORA	

For all calculations, an answer which agrees with the one in the mark scheme to $\mathbf{2}$ s.f. earns the marks

Question	Answer	Marks	Guidance
1 a	$\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$	1	
b	$\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$	1	
2 a		1	any straight line through the origin
b		1	any curve with increasing gradient through the origin
3 a	frequency of support equals/matches natural frequency of mass-spring system	1	accept driving frequency/vibration frequency as frequency of support accept resonant frequency as natural frequency
b	reduces amplitude of oscillations; by transferring energy from it / applying friction;	1 1	accept reduces resonant frequency accept broadens the peak of the amplitude-frequency (accept graph with labelled axes) accept lose energy

Question	Answer	Marks	Guidance
4	$T=273+\{-63\}=(210 \mathrm{~K}) ;$ EITHER $\begin{aligned} & (p V)=N k T=\frac{N m \overline{c^{2}}}{3} \\ & \sqrt{\overline{c^{2}}}=348 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ OR $\begin{aligned} & \frac{1}{2} m v^{2}=k T \\ & v=284 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	1 1 1	correct conversion to kelvin [1] use of correct relationships [1] evaluation [1] allow ecf from incorrect conversion to kelvin for [2] $\frac{1}{2} m v^{2}=\frac{3}{2} k T \text { gives } 348 \mathrm{~m} \mathrm{~s}^{-1} \text { for [3] }$
5	$\begin{aligned} & \text { initial momentum }=1.6 \times 0.56-2.4 \times 0.41=-0.088 \mathrm{~N} \mathrm{~s} ; \\ & \text { final momentum }=-1.6 \times 0.55+2.4 \times 0.33=-0.088 \mathrm{~N} \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	look for some working as well as value (2 s.f.) for each mark accept either direction as positive accept $11 / 125$ as value of total momentum
6	C	1	
7 a	collides with other molecules; then any one of: results in a random/unpredictable change of - velocity - momentum - direction - path length;	1 1	accept particles / atoms accept interacts as collides ignore collisions with walls look for randomness clearly associated with change of direction not the timing of collisions ignore description of a random walk
b	distance $\propto \sqrt{N}$ so distance ${ }^{2} \propto N$; $N \propto t$ so distance $\propto \sqrt{t}$ so $\frac{\text { distance }}{\sqrt{\text { time }}}=$ constant so $\frac{5}{\sqrt{1}}=\frac{50}{\sqrt{100}}$;	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept just mention of distance $\propto \sqrt{N}$ rule for first mark [1] accept argument without algebra e.g 50 mm is $10 \times 5 \mathrm{~mm}$, so it needs $10^{2}=100$ times as many steps so takes 100 times as long;
8	age of universe $=14 \times 10^{9} \times 3.2 \times 10^{7}=4.48 \times 10^{17} \mathrm{~s}$; distance $=3.5 \times 10^{6} \times 4.48 \times 10^{17}=1.6 \times 10^{24} \mathrm{~m}$; assumption: - steady expansion of universe - constant (recessional) velocity of galaxy - constant value for H_{0};	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	ecf: award [1] for $1.6 \times 10^{21} \mathrm{~m}$
	Section A Total	20	

Question	Answer	Marks	Guidance
$9 \quad \mathrm{a}$	$\frac{m v^{2}}{r}=\frac{G M m}{r^{2}}$ then rearrangement and cancellation to $v=\sqrt{\frac{G M}{r}}$	1 1	look for $v^{2}=\frac{G M}{r}$ as the smallest intermediate step in rearangement and cancellation
b i	$\begin{aligned} & v=1.93 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1} / v^{2}=3.72 \times 10^{8} \mathrm{~m}^{2} \mathrm{~s}^{-2} ; \\ & \frac{1}{2} m v^{2}=9.31 \times 10^{10} \mathrm{~J} ; \end{aligned}$	1 1	look for correct use of $v=\sqrt{\frac{G M}{r}}$ for first mark allow ecf on incorrect value of v for second mark accept $9 \times 10^{10} \mathrm{~J}$
ii	EITHER $\begin{aligned} & \Delta E_{G P E}=6.7 \times 10^{-11} \times 2.0 \times 10^{30} \times 5.0 \times 10^{2}\left(\frac{1}{1.5 \times 10^{11}}-\frac{1}{3.6 \times 10^{11}}\right) \\ & \Delta E_{G P E}=-2.61 \times 10^{11} \mathrm{~J} ; \\ & E_{K E}=9.31 \times 10^{10}+2.61 \times 10^{11} \mathrm{~J}=3.54 \times 10^{11} \mathrm{~J} ; \\ & O R \\ & \text { total } E \text { in original orbit }=-9.31 \times 10^{10} \mathrm{~J} ; \\ & E_{G P E} \text { in Earth orbit }=-4.47 \times 10^{11} \mathrm{~J} ; \\ & E_{K E} \text { in Earth orbit }=-9.31 \times 10^{10}+4.47 \times 10^{11}=3.54 \times 10^{11} \mathrm{~J} ; \\ & \text { THEN } \\ & v=\sqrt{\frac{2 E_{K E}}{m}}=3.76 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1} ; \end{aligned}$	1 1 1 1	use of $V_{g}=-\frac{G M}{r}$ or $E_{\text {GPE }}=-\frac{G M m}{r}$ for [1] calculation of GPE drop for [1] calculation of KE at Earth orbit for [1] calculation of speed at Earth orbit for [1] no ecf from one stage to the next allow ecf from incorrect $E_{\text {KE }}$ in (b)(i)
C	send a pulse of EM waves (radio, microwaves, light) towards the asteroid (and detect its reflection); $\text { distance }=\frac{(\text { pulse time }- \text { echo time })}{2} \times \text { speed of light }$ EITHER speed of EM waves constant (throughout journey) OR time out same as time back;	1 1 1	ignore radar accept equivalent in algebra e.g. $d=\frac{\Delta t}{2} c$ with defined Δt QWC for correct assumption accept travels at the speed of light throughout the journey ignore references to motion of asteroid not distance out same as distance back
	Total	11	

Question	Answer	Marks	Guidance
10 a	$\begin{aligned} & \text { volume }=(12.0 \times(1.2+3.2) / 2) \times 5.6=148 \mathrm{~m}^{3} ; \\ & \text { mass }=148 \times 1000=1.48 \times 10^{5} \mathrm{~kg} ; \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept ecf from incorrect volume for [1] look for 3 s.f. in correct value for mass
b	$4.2 \times 10^{3} \times 1.48 \times 10^{5} \times(30-10)=1.2(4) \times 10^{10} \mathrm{~J} ;$ any one from - no energy transfers from the water - no energy transfers into the heater - no evaporation of water owtte - specific thermal heat capacity independent of temperature	1 1	$1.5 \times 10^{5} \mathrm{~m}^{3}$ gives $1.26 \times 10^{10} \mathrm{~J}$ for [1] accept ecf from incorrect mass for [1] accept heater is 100% efficient not uniform temperature, or constant mass accept heat as energy accept no energy loss
c i	EITHER molecules per $\mathrm{kg}=6.0 \times 10^{23} / 1.8 \times 10^{-2}=3.33 \times 10^{25}$; energy per molecule $=2.3 \times 10^{6} / 3.33 \times 10^{25}=6.9 \times 10^{-20} \mathrm{~J}$ OR mass of one molecule $1.8 \times 10^{-2} / 6.0 \times 10^{23}=3.00 \times 10^{-26} \mathrm{~kg}$; energy per molecule $=2.3 \times 10^{6} \times 3.00 \times 10^{-26}=6.9 \times 10^{-20} \mathrm{~J}$;	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
ii	BF is probability that a molecule / fraction of molecules; can gain enough energy to leave pool / evaporate; through (random) collisions (with other molecules);	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	accept proportion / ratio / percentage not number QWC for describing molecule collisions
iii	$\begin{aligned} & 7.2 \times 10^{-3}=C e^{-6.9 \times 10^{-20} / 1.4 \times 10^{-23} \times(273+30)} ; \\ & C=8.34 \times 10^{4} ; \\ & 8.34 \times 10^{4} e^{-6.9 \times 10^{-20} / 1.4 \times 10^{-23} \times(273+10)}=2.28 \times 10^{-3} \mathrm{~kg} \mathrm{~s}^{-1} \end{aligned}$	1 1	award [1] for method which would eliminate C or give it a value $\varepsilon=7 \times 10^{-20} \mathrm{~J}$ gives $C=1.06 \times 10^{5}$ and $2.24 \times 10^{-3} \mathrm{~kg} \mathrm{~s}^{-1}$ for [2]
	Total	11	

Question	Answer	Marks	Guidance
12 a i	any one from - collides with walls with no loss of energy - momentum after collision is equal and opposite to momentum before collision - velocity after collision is equal and opposite to velocity before collision;	1	accept collisions are elastic / no change of speed / no change in magnitude of momentum not moving at right angles to wall
ii	$\text { time between collisions }=\frac{\text { distance to other face and back }}{\text { speed }}$	1	accept travels to right-hand face and back before hitting the lefthand face again owtte not just distance $=2 d$
b i	$F=\left(\frac{\Delta p}{\Delta t}\right)=\frac{m v^{2}}{d}$ (for one particle); three pairs of faces / three dimensions of box; so N/3 particles hit left-hand face;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	accept three directions in box look for explicit statement, not just algebra
ii	particles do not collide with each other / have no interaction / have no size / N is a very big number;	1	not same temperature / energy / speed / mass / hit faces at right angles / elastic collisions
c	temperature T is proportional to (average) energy of particles; $\text { kinetic energy }=\frac{1}{2} m v^{2} \text {; }$ then correct manipulation of $\frac{1}{2} m v^{2} \propto T$ to achieve $p=\frac{N k T}{V}$;	1 1 1	accept energy of a particle is $k T$ not just $\frac{1}{2} m v^{2}=\frac{3}{2} k T$ or $\frac{m v^{2}}{3}=k T$
	Total	9	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

