

GCE

Physics B (Advancing Physics)

Unit G494: Rise and Fall of the Clockwork Universe

Advanced GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2014

Annotations available in Scoris

Annotation	Meaning
BP	Blank Page - this annotation must be used on all blank pages within an answer booklet (structured or
	unstructured) and on each page of an additional object where there is no candidate response.
BCD	Benefit of doubt given
(co n	Contradiction
×	Incorrect response
[492	Error carried forward
	Follow through
1756	Not answered question
2000	Benefit of doubt not given
POT	Power of 10 error
A	Omission mark
RE.	Rounding error
37	Error in number of significant figures
✓	Correct response
AL .	Arithmetic error
2	Wrong physics or equation

G494 Mark Scheme June 2014

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Meaning
alternative and acceptable answers for the same marking point
Separates marking points
Answers which are not worthy of credit
Answers which are not worthy of credit
Statements which are irrelevant
Answers that can be accepted
Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
Error carried forward
Alternative wording
Or reverse argument

For all calculations, an answer which agrees with the one in the mark scheme to 2 s.f. earns the marks

Question		Answer		Guidance	
1	а	kg m s ⁻¹	1		
	b	kg m ⁻¹ s ⁻²	1		
2	а		1	any straight line through the origin	
	b		1	any curve with increasing gradient through the origin	
3	а	frequency of support equals/matches natural frequency of mass-spring system	1	accept driving frequency/vibration frequency as frequency of support accept resonant frequency as natural frequency	
	b	reduces amplitude of oscillations;	1	accept reduces resonant frequency accept broadens the peak of the amplitude-frequency (accept graph with labelled axes)	
		by transferring energy from it / applying friction;	ı	accept lose energy	

Question	Answer	Marks	Guidance
4	$T = 273 + \{-63\} = (210 \text{ K});$	1	correct conversion to kelvin [1]
	EITHER		
	$(nV) = NkT - \frac{Nmc^2}{n}$	1	use of correct relationships [1]
	$(\rho V) = NkT = \frac{Nm\overline{c^2}}{3}$		
	$\sqrt{\overline{c^2}} = 348 \text{ m s}^{-1}$	1	evaluation [1]
	OR		allow and from in connect accordance to high in for [0]
	$\frac{1}{2}mv^2 = kT$		allow ecf from incorrect conversion to kelvin for [2]
			1 2 3
	$v = 284 \text{ m s}^{-1}$		$\frac{1}{2}mv^2 = \frac{3}{2}kT$ gives 348 m s ⁻¹ for [3]
5	initial momentum = $1.6 \times 0.56 - 2.4 \times 0.41 = -0.088 \text{ N s}$;	1	look for some working as well as value (2 s.f.) for each mark
	final momentum = $-1.6 \times 0.55 + 2.4 \times 0.33 = -0.088 \text{ N s}$;	1	accept either direction as positive
6	C	1	accept 11/125 as value of total momentum
7 a	collides with other molecules;	1	accept particles / atoms accept interacts as collides
	then any one of: results in a random/unpredictable change of	1	ignore collisions with walls look for randomness clearly associated with change of direction
		'	not the timing of collisions
	• velocity		The same of the sa
	• momentum		ignore description of a random walk
	 direction 		
	• path length;		_
b	distance $\propto \sqrt{N}$ so distance $\propto N$;	1	accept just mention of distance $\propto \sqrt{N}$ rule for first mark [1]
	$N \propto t$ so distance $\propto \sqrt{t}$ so $\frac{\text{distance}}{\sqrt{\text{time}}} = \text{constant so } \frac{5}{\sqrt{1}} = \frac{50}{\sqrt{100}}$;	1	and any or and with and almahan and 50 years in 40 or 5 years in
	$\sqrt{\text{time}}$ $\sqrt{1}$ $\sqrt{100}$,	-	accept argument without algebra e.g 50 mm is 10 x 5 mm, so it needs 10 ² =100 times as many steps so takes 100 times as long;
8	age of universe = $14 \times 10^9 \times 3.2 \times 10^7 = 4.48 \times 10^{17}$ s;	1	
	distance = $3.5 \times 10^6 \times 4.48 \times 10^{17} = 1.6 \times 10^{24}$ m;	1	ecf: award [1] for 1.6×10 ²¹ m
	assumption:		
	steady expansion of universe	1	
	 constant (recessional) velocity of galaxy constant value for H₀; 		
	Section A Total	20	
	Section A Total		

Question	Answer	Marks	Guidance
9 a	$\frac{mv^2}{r} = \frac{GMm}{r^2}$ then rearrangement and cancellation to $V = \sqrt{\frac{GM}{r}}$	1	look for $V^2 = \frac{GM}{r}$ as the smallest intermediate step in rearangement and cancellation
b i	$v = 1.93 \times 10^4 \text{ m s}^{-1} / v^2 = 3.72 \times 10^8 \text{ m}^2 \text{ s}^{-2};$	1	look for correct use of $V = \sqrt{\frac{GM}{r}}$ for first mark
	$\frac{1}{2}mv^2 = 9.31 \times 10^{10} \mathrm{J};$	1	allow ecf on incorrect value of <i>v</i> for second mark accept 9×10 ¹⁰ J
ii	EITHER $\Delta E_{GPE} = 6.7 \times 10^{-11} \times 2.0 \times 10^{30} \times 5.0 \times 10^{2} \left(\frac{1}{1.5 \times 10^{11}} - \frac{1}{3.6 \times 10^{11}}\right)$ $\Delta E_{GPE} = -2.61 \times 10^{11} \text{ J};$ $E_{KE} = 9.31 \times 10^{10} + 2.61 \times 10^{11} \text{ J} = 3.54 \times 10^{11} \text{ J};$ OR total E in original orbit = -9.31×10^{10} J; E_{GPE} in Earth orbit = -4.47×10^{11} J; E_{KE} in Earth orbit = $-9.31 \times 10^{10} + 4.47 \times 10^{11} = 3.54 \times 10^{11}$ J; THEN $V = \sqrt{\frac{2E_{KE}}{m}} = 3.76 \times 10^{4} \text{m s}^{-1};$	1 1 1	use of $V_g = -\frac{GM}{r}$ or $E_{GPE} = -\frac{GMm}{r}$ for [1] calculation of GPE drop for [1] calculation of KE at Earth orbit for [1] calculation of speed at Earth orbit for [1] no ecf from one stage to the next allow ecf from incorrect E_{KE} in (b)(i)
С	send a pulse of EM waves (radio, microwaves, light) towards the asteroid (and detect its reflection); distance = \frac{(pulse time - echo time)}{2} \times \text{ speed of light }; EITHER speed of EM waves constant (throughout journey) OR time out same as time back;	1 1 1	ignore radar
	Total	11	

G494 Mark Scheme June 2014

Question	Answer	Marks	Guidance
10 a	volume = $(12.0 \times (1.2 + 3.2)/2) \times 5.6 = 148 \text{ m}^3$; mass = $148 \times 1000 = 1.48 \times 10^5 \text{ kg}$;	1	accept ecf from incorrect volume for [1] look for 3 s.f. in correct value for mass
b	$4.2 \times 10^{3} \times 1.48 \times 10^{5} \times (30 - 10) = 1.2(4) \times 10^{10} \text{ J};$ any one from	1	1.5×10 ⁵ m ³ gives 1.26×10 ¹⁰ J for [1] accept ecf from incorrect mass for [1] accept heater is 100% efficient
	 no energy transfers from the water no energy transfers into the heater no evaporation of water owtte specific thermal heat capacity independent of temperature 	'	not uniform temperature, or constant mass accept heat as energy accept no energy loss
c i	EITHER molecules per kg = $6.0 \times 10^{23} / 1.8 \times 10^{-2} = 3.33 \times 10^{25}$; energy per molecule = $2.3 \times 10^6 / 3.33 \times 10^{25} = 6.9 \times 10^{-20}$ J OR mass of one molecule $1.8 \times 10^{-2} / 6.0 \times 10^{23} = 3.00 \times 10^{-26}$ kg; energy per molecule = $2.3 \times 10^6 \times 3.00 \times 10^{-26} = 6.9 \times 10^{-20}$ J;	1 1	
ii	BF is probability that a molecule / fraction of molecules; can gain enough energy to leave pool / evaporate; through (random) collisions (with other molecules);	1 1	accept proportion / ratio / percentage not number QWC for describing molecule collisions
iii	7.2×10 ⁻³ = $Ce^{-6.9\times10^{-20}/1.4\times10^{-23}\times(273+30)}$; $C = 8.34\times10^4$; $8.34\times10^4e^{-6.9\times10^{-20}/1.4\times10^{-23}\times(273+10)} = 2.28\times10^{-3} \text{ kg s}^{-1}$	1	award [1] for method which would eliminate C or give it a value $\varepsilon = 7 \times 10^{-20} \text{ J gives } C = 1.06 \times 10^5 \text{ and } 2.24 \times 10^{-3} \text{ kg s}^{-1} \text{ for } [2]$
	Total	11	0 1.7.0 0 g.1.00 0 1.00 1

Question	Answer	Marks	Guidance
11 a	repeat the procedure without the protoactinium;	1	accept count rate as activity but not background radiation
	subtract result from recorded value with protoactinium;	1	
b	$A = -\frac{\Delta N}{\Delta t} (= \lambda N) ;$	1	look for correct use of minus sign in first step
	$\Delta t = \Delta t \left(- \lambda N \right)$		
	$A = \lambda N_0 e^{-\lambda t}$;	1	ignore $A = A_0 e^{-\lambda t}$
	$\ln A = \ln(\lambda N_0) - \lambda t;$	1	correct algebra which ignores the minus sign can earn [2]
С	7	3	best straight line through points [1]
	In A		accept any line through majority of points to meet time axis
			between 6.0 and 7.0 minutes
	· • • • • • • • • • • • • • • • • • • •		
			gradient = $-3.85 / (6.30 \times 60) = -1.02 \times 10^{-2} \text{ s}^{-1} [1]$
			accept from -0.90×10 ⁻² s ⁻¹ to -1.1×10 ⁻² s ⁻¹
	<u></u>		half-life = $0.693 / 1.0 \times 10^{-2} = 69 \text{ s} [1]$
			accept from 77 s to 63 s
			allow and an adjoulation of half life from incorrect 1 for [1]
	<u> </u>		allow ecf on calculation of half-life from incorrect λ for [1]
	4		t = t + t
			accept pair of data points from graph and use of $A = Ce^{-\lambda t}$ to
			obtain correct value for [2]
	0 1 2 3 4 5 6 7		
	time/minutes		
i		1	
	<u> </u>		
	Total	9	

Question		on	Answer	Marks	Guidance
12	а	i	 any one from collides with walls with no loss of energy momentum after collision is equal and opposite to momentum before collision velocity after collision is equal and opposite to velocity before collision; 	1	accept collisions are elastic / no change of speed / no change in magnitude of momentum not moving at right angles to wall
		ii	time between collisions = $\frac{\text{distance to other face and back}}{\text{speed}}$	1	<pre>accept travels to right-hand face and back before hitting the left- hand face again owtte not just distance = 2d</pre>
	b	i	$F = (\frac{\Delta p}{\Delta t}) = \frac{mv^2}{d}$ (for one particle); three pairs of faces / three dimensions of box; so <i>N</i> /3 particles hit left-hand face;	1 1 1	accept three directions in box look for explicit statement, not just algebra
		ii	particles do not collide with each other / have no interaction / have no size / N is a very big number;	1	not same temperature / energy / speed / mass / hit faces at right angles / elastic collisions
	С		temperature <i>T</i> is proportional to (average) energy of particles; kinetic energy = $\frac{1}{2}mv^2$;	1	accept energy of a particle is kT not just $\frac{1}{2}mv^2 = \frac{3}{2}kT$ or $\frac{mv^2}{3} = kT$
			then correct manipulation of $\frac{1}{2}mv^2 \propto T$ to achieve $p = \frac{NkT}{V}$;	1	
			Total	9	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

