GCE

## Physics B (Advancing Physics)

## Advanced Subsidiary GCE

## Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1. Abbreviations, annotations and conventions used in the detailed Mark Scheme.
/ = alternative and acceptable answers for the same marking point
(1) = separates marking points
not = answers which are not worthy of credit
reject $=$ answers which are not worthy of credit
ignore $=$ statements which are irrelevant
allow $=$ answers that can be accepted
() = words which are not essential to gain credit
= underlined words must be present in answer to score a mark
ecf = error carried forward
AW = alternative wording
ora $=$ or reverse argument
2. Annotations: the following annotations are available on SCORIS

| $\checkmark$ | $=$ correct response |
| :--- | :--- |
| $\times$ | $=$ incorrect response |
| bod | $=$ benefit of the doubt |
| nbod | $=$ benefit of the doubt not given |
| ECF | $=$ error carried forward |
| $\hat{n}$ | $=$ information omitted |
| POT | $=$ power of 10 error |
| SF | $=$ significant figures |
| RE | $=$ repeated error |
| NAQ | $=$ not answered question |
| FT | $=$ follow through |
| CON | $=$ contradiction |
| $?$ | $=$ unclear |
| AE | $=$ arithmetic error |


| Expected Answers |  |  | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 1 | a | A $\checkmark$ | 1 | not $\mathrm{Cs}^{-1}$ |
| 1 | b | V $\checkmark$ | 1 | not $\mathrm{J} \mathrm{C}^{-1}$ |
| 1 | c | S $\checkmark$ | 1 | not $\mathrm{A} \mathrm{V}^{-1}$ not $\Omega^{-1}$ |
| 2 | a b | $95 \Omega \quad 105 \Omega \quad \checkmark$ <br> use of a correct potential divider formula e.g. $R_{1} \times V /\left(R_{1}+R_{2}\right)$ <br> $\checkmark \mathrm{m}$ $=95 \times 10 / 200=4.75 \mathrm{~V}$ | 1 <br> 1 <br> 1 | both correct for the one mark <br> accept recognisable symbols / numbers method allow calculation of current, but must be clear e.g. either $\underline{I}=$ 0.05 OR $0.05 \underline{\text { A (using } 95+105) ~} \Omega$ not $(100+100) \Omega$ give BOD on $200 \Omega$ total <br> evaluation allow ecf on incorrect values from (a) |
| 3 | a <br> b |  | 1 <br> 1 |  |
| 4 |  | rotate the filter (and observe reflection) change angle $r$ (and observe reflection) see if intensity of (reflected) light fluctuates from max to min / min to max for $90^{\circ}$ rotation of filter at minimum intensity see if intensity of reflected light depends on angle $r$ / position of reflection minimum intensity indicates degree of polarisation | 3 | credit any three points max 3 accept AW throughout not any credit for describing set up of Fig 4.1 <br> accept glare for intensity and zero for minimum intensity accept minimum intensity when filter is crossed (with direction of vibration of reflected light) / vertical / at $90^{\circ}$ to plane of polarisation ORA maximum when parallel accept max - min - max for a $180^{\circ}$ rotation / min - max - min i.e. don't penalise min if filter's polarisation is horizontal <br> QWC award $3^{\text {rd }}$ mark only if answer is well organised and clear |


| Expected Answers |  |  | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 5 | a | $( \pm 1.25 / 50)= \pm 2.5 \% / \pm 3 \%$, | 1 | working not required accept answers in range $\pm 2 \%$ to $\pm 3 \%$ not answers expressed to more than 2 SF |
| 5 | b | the uncertainties (in either p.d. or wind speed) increase as the wind speed / p.d. increases / the \% uncertainties (in either p.d. or wind speed) are constant I the \% uncertainties in wind speed are larger than those in p.d | 1 | accept AW <br> not the uncertainties in wind speed are larger than those in p.d |
| 5 | C | output only starts to increase for wind speeds above $1.5 \mathrm{~m} \mathrm{~s}^{-1}$ <br> output starts linearly (to about $20-30 \mathrm{~m} \mathrm{~s}^{-1}$ ) $\checkmark$ <br> sensitivity decreases at higher wind speeds / the rate of increase of the p.d. decreases at higher wind speeds | 2 | accept any $2 / 3$ different correct features <br> accept does not pass through the origin not proportional <br> accept output initially increases at constant rate <br> not reference to graph gradient alone <br> must have region clear for any of the marks <br> accept output p.d. starts to level off at higher wind speeds accept output increases at lower rate at higher windspeed ignore slower rate <br> not any credit for answers involving uncertainties here |
| 6 | a | 144 (bits) <br> 18 (bytes) $2^{144}=2.2(3) \times 10^{43}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | accept ecf (a)/8 evaluated without method not any other value accept ecf $2^{\text {bits from (a) }}$ evaluated not any other value |
| 7 | a | mass $=\varrho \mathrm{V}$ and $2^{\text {nd }}$ lens has less volume (but same density ) | 1 | accept less material of same density / lens is thinner and has same density |
| 7 | b | (higher index) means greater slowing / bending / refraction of light so thinner / less curved lens is needed ( to achieve same power / curvature added to wavefronts) | 1 | accept correct answers based on rays or bending of light including Snell's Law (now off spec) but must link explanation of index to lens shape <br> not just it bends the light by the same amount |
|  |  | Section A total | 20 |  |


| Expected Answers |  |  | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 8 | ai | straight line graph B half gradient of $\mathbf{A}$ and passing through origin | 1 | expect graph B to pass through points $(0,0)$ and $(1.4,5 \pm 0.2)$ not any credit for freehand line outside marking tool look at graph labels |
| 8 | ii | straight line graph C four times gradient of A $\checkmark$ and passing through origin | 1 | expect graph $\mathbf{C}$ to pass through $(0,0)$ and $(0.4,11.4 \pm 1.0)$ not any credit for freehand line outside marking tool |
| 8 | bi | proportionality / straight line through origin $\checkmark$ | 1 | accept obeys Hooke's law not linear |
| 8 | ii | $\begin{aligned} & \sigma=1.2(8) \times 10^{8} \mathrm{~Pa} \quad / 1.3 \times 10^{8} \mathrm{~Pa} \\ & \varepsilon=0.00070 \\ & Y=\sigma / \varepsilon=1.8(3) \times 10^{11} \mathrm{~Pa} \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | accept points from $F(x)$ graph other than max values accept $\mathrm{Y}=\mathrm{FL} /(\mathrm{eA})$ for 1 method marks / with correct substitution for $2^{\text {nd }}$ mark <br> accept final answers in range 1.8 to $1.9 \times 10^{11} \mathrm{~Pa}$ final evaluation allow ecf on incorrect $\sigma / \varepsilon$ values POT power of ten error max $2 / 3$ |


| Expected Answers |  |  | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 8 | C | metal atoms lose electrons / form +ve ions $\checkmark$ free / de-localised / gas / sea -ve electrons $\checkmark$ attractive forces / non-directional bonding between +/ions bonds them positive metal ions are close-packed / regularly stacked in planes / lattice / lines <br> when +ve ions are given small displacement / atomic planes move relative to neighbours $\quad \checkmark$ restorative force so ions return when force is removed <br> QWC do not award full marks unless 3 or $\checkmark$ more appropriate technical terms used or if any one term is used incorrectly or if answer in terms of plastic behaviour do not accept incorrectly used technical terms | 1 1 1 1 1 1 | description of metallic bonding <br> accept any 2 relevant points credit clear well labelled diagrams <br> QWC examples of acceptable technical terms underlined accept other appropriate technical terms used correctly <br> explanation of elastic not plastic behaviour <br> accept AW <br> accept move from equilibrium position and then return <br> accept electron glue <br> not any confusion with slip / sliding / plastic / ductile / malleable for this and also loses QWC mark i.e. max 2 if mentioned <br> QWC examples of acceptable technical terms underlined <br> accept shorthands for positive / negative charge $+/-/+$ ve / -ve |
|  |  | Total | 10 |  |


| Expected Answers |  |  | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 9 | a | 22 (mV) | 1 | not 21 mV |
| 9 | b | Time period $=0.90 \quad \checkmark \quad \mathrm{~ms} \quad \checkmark$ $\mathrm{f}=1 / \mathrm{T}=1 /\left(0.90 \times 10^{-3}\right)=1100(\mathrm{~Hz}) \checkmark$ | $2$ $1$ | reading 0.90 from graph; recognition of $\mathrm{ms} / 10^{-3}$ s provided $\mathrm{T} \leq 5 \mathrm{~ms}$ accept e.g. 5 waves / 4.5 ms for 2 marks <br> evaluation <br> accept $1111(\mathrm{~Hz})$ <br> allow ecf on incorrect T up to 5 ms <br> accept POT error 1.1 Hz scores $2 / 3$ |
| 9 | c | $\begin{aligned} \varepsilon & =\sigma / \mathrm{Y}=2.0 /\left(72 \times 10^{9}\right) \\ & =2.7(8) \times 10^{-11} \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | method mark <br> evaluation accept ora $\sigma=\varepsilon \mathrm{Y}=2.2 \mathrm{~Pa} \approx 2.0 \mathrm{~Pa}$ for full credit accept calculator value for full credit <br> accept $2.7 \times 10^{-11}$ (show that) $/ 2.8 \times 10^{-11}$ <br> not any credit for $2.8 \times 10^{-2}$ |
| 9 | d | $\begin{aligned} & \text { resolution }=\text { length } / \text { pixel } \\ & =(10.5 / 4.0) \times 0.20 \times 10^{-3} / 400 \approx 1.3 \mu \mathrm{~m} \end{aligned}$ | 1 | evaluation accept estimates in the range 1.2 to $1.5 \mu \mathrm{~m}$ without apparent method |
| 9 | ei | $\begin{aligned} & \varepsilon \text { at } 900 \mathrm{~V}=1.3 \times 10^{-9} \times 900=1.1(7) \times 10^{-6} \\ & x=\varepsilon \mathrm{L}=1.17 \times 10^{-6} \times 8 \times 10^{-3} \\ & =9.3(6) \times 10^{-9}(\mathrm{~m}) / 9.4 \times 10^{-9}(\mathrm{~m}) \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | evaluation accept $1.2 \times 10^{-6}$ method allow 2 marks if both parts calculated together evaluation accept $9.6 \times 10^{-9}$ (m using rounded strain) not $9 \times 10^{-9}$ |
|  | ii | $9.36 \times 10^{-9} / 260 \times 10^{-12} \approx 36$ | 1 | accept $35 / 37$ from rounded strain allow ecf on incorrect extension from $\mathbf{i}$ |
|  |  | Total | 11 |  |


| Expected Answers |  |  |  | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | a | (a gas) in which some atoms / molecul have lost electrons <br> to become positive ions / charged ions | particles | $1$ $1$ | idea of atom's loss of electrons ignore gain of electrons accept $e^{-}$symbol / clearly labelled diagrams <br> idea of production of positive ions ignore production of -ve ions not any credit for just contains + and - charges |
| 10 | b | $\lambda=c / f=1.0(3) \times 10^{-7}(\mathrm{~m})$ | $\checkmark$ | 1 | evaluation mark accept $1 \times 10^{-7}$ (m) |
| 10 | C | $\begin{aligned} E & =V Q \quad /=240 \times 1.6 \times 10^{-19} \\ & =3.8(4) \times 10^{-17}(\mathrm{~J}) \end{aligned}$ |  | $1$ $1$ | method in symbols / numbers evaluation accept $4 \times 10^{-17}(\mathrm{~J})$ |
| 10 | di ii | ```240 V 120 V 0.26(4) \muA from graph power = 2.64 \times10-7 \times180 x 6.2 \106 = 295 (W)``` | $\begin{gathered} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | both p.d.s to $\pm 5 \mathrm{~V}$ <br> read from graph tolerance $\pm 0.005 \mu \mathrm{~A}$ <br> method in words / numbers accept $4.7 \times 10^{-5}(\mathrm{~W})$ pixel $^{-1}$ <br> accept answers in range 290 to 301 W <br> evaluation allow ecf on incorrect current |
|  |  | Total |  | 10 |  |

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Expected Answers} \& Marks \& Additional Guidance \\
\hline 11 \& ai \& \begin{tabular}{l}
\[
9.6(\Omega)
\] \\
graph curves upwards / gradient increases
\end{tabular} \& \[
1
\]
\[
1
\] \& \begin{tabular}{l}
not \(10(\Omega)\) \\
not just curves not resistance is gradient accept \(Y\) 's resistance rises as \(I\) or \(V\) rises
\end{tabular} \\
\hline 11 \& bi \& \begin{tabular}{l}
resistance of \(\mathbf{X}\) changes (as \(\mathbf{S}\) is moved) and changes \(I\) / V of lamp \\
increasing resistance of \(\mathbf{X}\) reduces current through \(\mathbf{Y}\) / reduces p.d. across \(\mathbf{Y} /\) reduces power of \(\mathbf{Y}\)
\end{tabular} \& 1
1

2

1 \& | credit change in $R$ linked to $I$ or $V$ for $1^{\text {st }}$ mark |
| :--- |
| credit correct sense of change for $2^{\text {nd }}$ mark ORA for reducing the resistance of $X$ must have complete logical explanation for both marks accept good discussions of potential divider of $\mathbf{X}$ with $\mathbf{Y}$ and correct sense of change |
| one mark for each correct value no method needed |
| accept power estimates in range 2.0 to 2.2 W |
| not $2.34(\mathrm{~W})$ misreading graph scale |
| accept $3.1 / 3.7(\mathrm{~W})\left(\right.$ using $\mathrm{V}_{\text {lamp }}=12-\mathrm{V}_{\mathrm{x}}$ ) | <br>

\hline 11 \& C \& greater range of current / p.d. / power control from zero (to max $2 \mathrm{~A} / 12 \mathrm{~V} / 24 \mathrm{~W}$ ) \& $$
1
$$

\[
1

\] \& | accept AW or any sensible high level answer |
| :--- |
| accept is able to turn lamp off not more efficient / accurate / precise / reliable / sensitive / resolution / easy to control / cheaper / safer / better | <br>

\hline \& \& Total \& 9 \& <br>
\hline \& \& Section B total: \& 40 \& <br>
\hline \& \& Paper total: \& 60 \& <br>
\hline
\end{tabular}

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

## www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU


Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

