GCE

Physics B (Advancing Physics)

Advanced Subsidiary GCE

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations available in SCORIS

Annotation	Meaning
[1]	Benefit of doubt given
[COTN]	Contradiction
$*$	Incorrect response
[19]	Error carried forward
\square	Follow through
[䢔	Not answered question
-	Benefit of doubt not given
PiT	Power of 10 error
[8]	Omission mark
$\square \square^{1 / 8}$	Rounding error
\square	Error in number of significant figures
\checkmark	Correct response
[-7	Arithmetic error
4	Wrong physics or equation

Subject-specific Marking Instructions

Annotations on the detailed mark scheme

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
$\mathbf{(1)}$	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
$\mathbf{()}$	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Question			Answer	Marks	Guidance
8	(a)		stiff / high YM ; so does not stretch (too far under stress) / tough / not brittle ; so does not break easily / cracks don't propagate / so does not snap easily	2	only allow stiffness / YM / toughness if qualified by explanation that needs large value explanation must be linked to the property accept compliant ; so flexible to bend around pulley accept elastic ; returns to its original length when unstressed not strong / hard / ductile / malleable / durable
	(b)		```method x-area = F/\sigma / = 5.4 x104 /1.1 x 108 evaluation = 4.9 x 10-4 (m}\mp@subsup{}{}{2}```	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	method accept algebra / numbers not just $\sigma=F / A$ evaluation accept $5 \times 10^{-4} \mathrm{~m}^{2} / 4.9 \mathrm{~cm}^{2} / 5 \mathrm{~cm}^{2}$
	(c)	(i)	$\begin{aligned} & \text { method } \varepsilon=\sigma / E \quad /=1.1 \times 10^{8} / 2.1 \times 10^{11} \\ & \text { evaluation }=0.0005 \underline{2}(4)(\approx 0.05 \%) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	method accept algebra / numbers evaluation needs 2 or more S.F. for show that ignore attempts to convert to \%
		(ii)	$\begin{aligned} & \text { method } x=\varepsilon \times L \quad l=0.00052 \times 650 \\ & \text { evaluation }=0.34 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	method accept algebra / numbers not just $\varepsilon=x / L$ If working from YM then must have $x=F L / A E$ for first mark accept $0.32(5) \mathrm{m}$ using show that strain 0.05% accept ecf on strain from (ci) x 650 max 1 for calculating with $\varepsilon \%$ (POT)
	(d)		for safety (margin) / awareness of engineering safety limits / avoid getting near to permanently changing length of the cable	1	accept to avoid getting near to plastic / permanent deformation in cable accept to stay well below elastic limit accept to allow for material / manufacturing defects accept to allow for cyclic loading / fatigue / corrosion not just elastic limit is yield point not just so cable does not break / snap / crack / fail
			Total	9	

Question			Answer	Marks	Guidance
9	(a)	(i)	Idea of (two) resistors in series / sharing the (total) p.d. (in proportion to their resistances)	1	AW accept algebraic versions e.g. $V_{1} / V_{2}=R_{1} / R_{2}$
		(ii)	resistance ratio $R_{\text {fixed }} / R_{\text {thermistor }}$ changes (correct sense) ratio rises (so p.d. across $R_{\text {fixed }}$ rises) ORA OR total R less ; so current increases through fixed resistor (and p.d. across it rises)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	penalise any error of physics max 1/3 e.g. p.d. through / current across / current remains constant when $R_{\text {thermistor }}$ changes $V_{\text {thermistor }}$ falls so $V_{\text {fixed }}$ rises scores 1 for physics not any credit for repeating root of question part explanation without physics errors and no more than 1 error in SPG for $3^{\text {rd }}$ QoWC mark
	(b)	(i)	(sensitivity) decreases (as temperature rises)	1	
		(ii)	gradient / $\Delta V / \Delta T$ / $\Delta y / \Delta x$ / Δ output / Δ input / change dependent / change independent variables values e.g. 0.5 / 20 $\text { evaluation }=0.025\left(\mathrm{~V}^{\circ} \mathrm{C}^{-1}\right)$	1 1 1	method look at graph below answers accept e.g. (3.7-1.1) / $70=(0.037)\left(\mathrm{V}^{\circ} \mathrm{C}^{-1}\right)$ for max 1 accept values from graph / linear extrapolation of tangent at $70^{\circ} \mathrm{C}$ / sensible small triangles drawn on graph around $70^{\circ} \mathrm{C}$ not any further credit for V / T calculations $0.053\left(\mathrm{~V}^{\circ} \mathrm{C}^{-1}\right)$ evaluation accept within range 0.021 to $0.029\left(\mathrm{~V}^{\circ} \mathrm{C}^{-1}\right)$
		(iii)	from graph $V\left(\right.$ fixed at $\left.70^{\circ} \mathrm{C}\right)=3.7 \mathrm{~V}$ method mark: any correctly substituted divider equation e.g. $R / 800=3.7 / 2.3$ OR $I=2.3 / 800=2.9 \mathrm{~mA}$ $R=1300 / 1290 / 1287(\Omega)$	1 1 1	standalone mark reading from graph not any tolerance but credit even if associated with thermistor method allow ecf on 3.6 to 3.8 V accept $3.7 / 6.0=R /(R+800)$ evaluation accept other values in range 1275 to 1300Ω for full credit (due to intermediate rounding); accept other values in outer range 1200 to 1400Ω for $\max 2$ not any further credit for $R=500 \pm 10$ (Ω)
			Total	11	

Question			Answer	Marks	Guidance
10	(a)	(i)	$(M=v / u=0.055 / 10)=0.0055$	1	evaluation accept 5.5×10^{-3} ignore - ve signs
		(ii)	$\begin{aligned} & P \text { OR } 1 / f=1 / v-1 / u \quad /=1 / 0.055-1 /(-10) \\ & =18.3 \text { (D) } \end{aligned}$	1 1	method accept clear statement of approximation $P \approx 1 / v /$ $f \approx v \quad / \quad P \approx 1 / 0.055$ accept calculation of $f=0.0547 \mathrm{~m}$ for $1^{\text {st }}$ mark evaluation accept 18.2 (D) must have 3 S.F. for show that not 18.1 (D) (from sign error)
		(iii)	$\begin{aligned} & \text { magnification } \times D \quad l \quad \text { using similar triangles } \\ & 67 \mathrm{~mm} \times 0.0055 \\ & =0.00037 \mathrm{~m} \quad(\approx 0.4 \mathrm{~mm}) \end{aligned}$	1 1	method allow ecf mag (ai) x D correctly evaluated for 2 marks accept $67 \mathrm{~mm} / 182$ (NB $1 / M=182$) evaluation $0.37 / 0.3685 \mathrm{~mm}$ must have at least 2 S.F. for show that
	(b)	(i)	$=70 \times 0.37 \approx 26 / 25.9$ (integer not necessary) $(=70 \times 0.4=28)$ using show that value	1	```accept 70\times0.3685 = 25.8 accept ecf for image size from (aiii) in mm x 70 not 4690```
		(ii)	$\begin{aligned} & =67 \mathrm{~mm} / 25.8=2.6 \times 10^{-3}(\mathrm{~m}) \\ & (=67 / 28=2.39 \mathrm{~mm}) \text { using show that value } \end{aligned}$	1	accept $2.6 \mathrm{~mm} / 1$ S.F. answers so 3 mm OR 2 mm accept other methods $1 / 70 \mathrm{~mm} / 0.0055$ OR $1 / 70 \mathrm{~mm} \times 182$ / similar triangles methods
	(c)		$=0.085(2) \mathrm{m}$ (based on ± 1 pixel on each image) must have unit bii is the resolution of ball's position (at 10 m from camera) / recognition that on CCD resolution is to nearest integer of pixels standalone explanation	1 1	accept 0.0826 m OR 0.083 m (based on ± 1 pixel) accept any answers in range 0.082 m to $0.0 \overline{8} 6 \mathrm{~m}$ allow ecf on ($0.08+$ bii) OR ($0.08+2 \times$ bii) up to max value of 0.090 m accept AW and other sensible comments: accept reasoning about whole numbers of pixels / about use of 1 or 2 pixels uncertainty in 2 images not any credit for answers that imply a "perfect" measurement
			Total	9	

Question			Answer	Marks	Guidance
11	(a)	(i)	$(25 / 12)=2.08$ (A)	1	2.1 (A) to 2 S.F. not 2 (A) to 1 S.F.
		(ii)	$(2.08 / 12)=0.17(3) \quad(S)$	1	$0.17(S)$ to 2 S.F. not 0.2 $(\mathrm{~S})$ accept 0.174 $0.175 /$ 0.18 accept ecf on ai $/ \mathrm{S})$ from rounding a correctly evaluated
	(b)		many / high density of ; free / delocalised / unbound / gas / sea of / soup ; electrons which act as ; movement of charge carriers / transfer (negative) charge / carry charge	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	any 3 / 4 marking points in a well organised sentence for $3^{\text {rd }}$ QWC mark ignore lattice of positive ions accept idea of flow of charge / idea of drift velocity of charge must mention charge in motion not just are charged
	(c)	(i)	there are no free charge carriers / electrons	1	accept electrons are localised in ionic/covalent bonds accept not many / few / low density free electrons
		(ii)	lamp runs hot / heating identified as a problem ceramics don't melt in the lamp ORA for plastics ceramics have a high(er) melting point (scores 2 heating implicit)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept plausible thermal properties explained e.g. ceramics have a small(er) thermal expansion so pins do not loosen / ceramics better / good thermal conductors so do not overheat for $\mathbf{2}$ marks (running hot is implicit) not heat resistance / temperature resistance for $2^{\text {nd }}$ mark
		(iii)	plastics are tough(er) / not brittle / less brittle (than ceramics)	1	accept AW less likely to break under impacts ignore safer because plastic is electrical insulator / cheaper / easier to manufacture / easy to mould / durable
			Total	9	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2012

