

# GCE

## **Physics B (Advancing Physics)**

Advanced Subsidiary GCE

Unit G491: Physics in Action

### Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

| Sec      | Section A |                                                         |   |                                                                                                                                                                                                                                                                   |  |  |  |
|----------|-----------|---------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Question |           | n Expected Answers Marks Addition                       |   | Additional Guidance                                                                                                                                                                                                                                               |  |  |  |
| 1        |           | (a) Ω ; (b) W ; (c) C                                   | 3 | <b>not</b> any = units not listed e.g. $A V^{-1}$ ; $J s^{-1}$ ; As                                                                                                                                                                                               |  |  |  |
| 2        |           | extension = $L x \text{ strain} / = 10 x 3 = 30 (cm)$   | 1 | method in words / numbers <b>not</b> credit for bare 30 cm<br><b>accept</b> 0.1 x 3 = 0.3 (m) for method                                                                                                                                                          |  |  |  |
|          |           | total length = 30 + 10 = 40 (cm)                        | 1 | standalone method with evaluation<br><b>allow</b> ecf on extension value + 10 (cm) provided unit consistent<br>and that the value added to 10 is clearly labelled extension (even if<br>derived from a wrong formulation)<br><b>accept</b> bare 40 cm for 2 marks |  |  |  |
| 3        | а         |                                                         | 2 | one independent mark for each correct link<br>not multiple links from one box on left if one line is not clearly<br>crossed out                                                                                                                                   |  |  |  |
|          | b         |                                                         | 1 | one mark for each correct tick<br>3 ticks scores max 1<br>4 or more ticks scores 0                                                                                                                                                                                |  |  |  |
| 4        | а         | $n = c / v / = 3 \times 10^8 / 1.9 \times 10^8$ $= 1.6$ | 1 | method in words / symbols / numbers<br><b>not</b> just $v_1 / v_2$<br>evaluation <b>accept</b> 1.58 apply <b>SF</b> penalty to more than 3 S.F.<br><b>not</b> 1.57 <b>a.e.</b>                                                                                    |  |  |  |

G491

#### Section A

| Question |   | on | Expected Answers                                                                                                                                        | Marks | Additional Guidance                                                                                                                                                                                                                                                                                                                                     |
|----------|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5        | а |    | adds curvature to wavefronts / focusses wavefronts                                                                                                      | 1     | AW <b>accept</b> waves converge / change curvature / curves waves<br><b>not</b> just wavefronts refract                                                                                                                                                                                                                                                 |
|          | b |    | e.g. lens thinner at edges<br>so waves slowed for less time / get ahead<br><b>OR</b> refracts more at edges where surface is angled<br>more for 2 marks | 1     | <ul> <li>accept ora lens thicker at centre not just convex shape</li> <li>so waves slowed for longer / get held back</li> <li>OR wavefronts show distance of travel in equal time intervals</li> <li>allow reluctantly waves are slowed down more near the centre of lens BOD</li> <li>but penalise implication of different <i>n</i> values</li> </ul> |
| 6        | а |    | (deforms under stress) and does not return to original size / shape (when stress is removed)                                                            | 1     | AW <b>accept</b> permanent deformation<br><b>accept</b> permanent change of atomic positions <b>not</b> just movement<br>of atoms<br><b>not</b> has permanently changed <b>state</b>                                                                                                                                                                    |
|          | b |    | metals:       atomic planes / ion planes /         crystalline structure / close packed       ;                                                         | 1     | <b>not</b> any mark for recording choice of material<br>marks require concept of slip; in reasonable context <b>allow</b> AW                                                                                                                                                                                                                            |
|          |   |    | Can slip / slide over each other OR Iong-chain polymers: coiled / random / cross-linked                                                                 | 1     | accept dislocation mechanism explained                                                                                                                                                                                                                                                                                                                  |
|          |   |    | chains slip / slide by each other / tangled molecules<br>straighten / line up                                                                           |       | <ul> <li>accept bonds rotate / chains uncoil</li> <li>accept clear annotated diagrams for either structure</li> <li>max 1 if no mention of material / if incorrect material chosen</li> </ul>                                                                                                                                                           |

| uestion | Expected Answers                                                                                                                      | Marks | Additional Guidance                                                                                                                   |
|---------|---------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------|
| 'a      | (gradient of graph) e.g. 108 x 10 <sup>6</sup> / 0.0006                                                                               | 1     | method any clear attempt to find gradient <b>OR</b> $\sigma$ / $\epsilon$ ratio <b>ignore POT</b> errors for 1 <sup>st</sup> mark     |
|         | $\approx 1.8 \times 10^{11} (Pa)$ / $\approx 1.8 \times 10^5 M(Pa)$                                                                   | 1     | evaluation <b>accept</b> in range (1.77 to 1.83) x 10 <sup>11</sup>                                                                   |
|         |                                                                                                                                       |       | <b>not</b> any credit for inverse ratio 0/2 marks                                                                                     |
| b       | plot line of max and or min slope through ± bars ;                                                                                    | 1     | AW also credit method from drawings on Fig. 7 <b>check Fig. 7</b> e.g. one mark for a line of max/min slope through uncertainties     |
|         | find max and or min value / difference in gradient                                                                                    | 1     | accept if their answer implies uncertainty range / spread                                                                             |
|         | <b>OR</b> using a point with error bars<br>use the max and or min value from ± bars ;<br>to calculate max and or min value of Y.M.    |       |                                                                                                                                       |
|         | <b>OR</b> using a point with error bars<br>estimate max % error (strain) from ± bar ;<br>recognise this % applies to original modulus |       | ignore any reference to % error in stress                                                                                             |
|         |                                                                                                                                       |       | accept $\pm \approx 5\%$ estimate if no explanation for 1 markaccept $\approx 10\%$ if their estimate implies uncertainty range for 1 |
|         | Total section A                                                                                                                       | 21    |                                                                                                                                       |

| Sect | Section B |    |                                                                                                                                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|------|-----------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Qu   | Question  |    | Expected Answers                                                                                                                                                                                     | Marks       | Additional Guidance                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 8    | а         |    | $7 \\ 2^7 = 128$ / $\log_2(128) = 7$                                                                                                                                                                 | 1<br>1      | <b>not</b> any other value<br><b>must</b> have explanation for 2 <sup>nd</sup> mark                                                                                                                                                                                                                                                                                   |  |  |  |
|      | b         |    | pixels x bits pixel <sup>-1</sup> / = 700 x 520 x 7 / = $2.5(5) \times 10^{6}$<br>= $2.55 \times 10^{6} / 8 = 0.3(2) \times 10^{6}$ bytes (< 1 Mbyte)                                                | 1           | method <b>accept</b> ecf on wrong value from <b>a</b><br><b>not</b> any credit for number of pixels only <b>364000</b><br>evaluation <b>accept</b> ecf from <b>a</b> only <b>not</b> pixels / 8<br><b>accept</b> computer Mbyte = 1024 <sup>2</sup> gives 0.30(3) Mbyte                                                                                               |  |  |  |
|      | C         |    | correct distances from image e.g. 2.6 cm and 0.7 cm<br>estimate $\approx$ 3.7 <b>OR</b> ratio in fractional form 2.6 / 0.7<br>further reasoning / explanation                                        | 1<br>1<br>1 | <ul> <li>1<sup>st</sup> mark for measured values only to nearest ± 1 mm but if ratio for 2<sup>nd</sup> mark is in tolerance accept (not used markers)</li> <li>2<sup>nd</sup> mark for calculated ratio / bald est. between 3.1 and 4.5 If inverse ratio i.e 0.22 to 0.32, max 1 for measured values</li> <li>3<sup>rd</sup> mark for supporting argument</li> </ul> |  |  |  |
|      |           |    | image size $\propto$ object length / distance from lens /<br>image size $\propto$ (distance) <sup>-1</sup> /<br>image size = constant / distance /<br>( ratio ) = length Atlantis / length Endeavour |             | <b>accept</b> angle subtended argument<br><b>QWC</b> reasoning must be completely transparent for the award of 3/3<br>marks otherwise max 2/3                                                                                                                                                                                                                         |  |  |  |
|      | d         | i  | pixels shuttle <sup>-1</sup> $\approx$ (2.6 cm / 9.3 cm) x 520 pixels /<br>$\approx$ 145 pixels<br>length = 145 x 0.24 = 35 m                                                                        | 1           | <b>accept</b> estimated number of pixels in range 138 to 153<br><b>accept</b> length in range 33 to 37 m<br><b>allow</b> ecf on incorrect number of pixels                                                                                                                                                                                                            |  |  |  |
|      | d         | ii | Using ratio from <b>c</b> 0.24 x 3.7 = 0.89 (m pixel <sup>-1</sup> )<br><b>OR</b> Using length <b>di</b> / pixels for Endeavour<br>= 35 m / 39 pixels<br>= 0.90 (m pixel <sup>-1</sup> )             | 1           | <ul> <li>accept answers in range 0.7 to 1.1 (m pixel<sup>-1</sup>)</li> <li>allow ecf on 0.24 x incorrect ratio from c</li> <li>allow ecf on length from di / (33 to 45) pixels for Endeavour</li> <li>CLICK fit to height button to see earlier answers as well to check for ecf</li> </ul>                                                                          |  |  |  |
|      |           |    | Total question 8                                                                                                                                                                                     | 10          |                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |

#### G491

#### Section B

| Question |   | on  | Expected Answers                                                                                                                                                                                                                                                                                                                        | Marks       | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|---|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9        | а |     | 3100 (Hz)                                                                                                                                                                                                                                                                                                                               | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | b | i   | 6800 (Hz)<br><u>high</u> f are missed                                                                                                                                                                                                                                                                                                   | 1           | value<br>explanation <b>accept</b> aliases appear / spurious low f appear /<br>require a minimum of two samples per cycle to detect that frequency<br><b>accept</b> sample at 2 x <b>highest f</b> present<br><b>not</b> just 2 x 3400<br><b>not</b> signal becomes distorted                                                                                                                                                                                                                                                                                    |
|          | b | ii  | $b = \log_2 (V_t / V_n) / \log_2 (250)  OR \qquad 2^8 = 256$<br>= 7.9(7) $OR \qquad > 250$<br>e.g. with more bits signal resolution $\Delta V < V_{\text{noise}}$<br>so info is redundant / extra information is about details<br>in noise not details in signal                                                                        | 1<br>1<br>1 | method<br>log <sub>2</sub> evaluation <b>OR</b> comparison <b>accept</b> 2 <sup>7</sup> = 128 (< 250)<br>AW but <b>must</b> be a high level convincing explanation<br><b>not</b> any implication that more bits adds noise<br><b>QWC</b> answers should be well justified for the final mark to be<br>awarded<br><b>accept</b> well annotated diagrams showing noise and total signal<br>ranges and effect of more / fewer bits                                                                                                                                  |
|          | b | iii | rate = sampling f x bits sample <sup>-1</sup> / 6800 x 8<br>= $5.4(4) \times 10^4$ (bit s <sup>-1</sup> )                                                                                                                                                                                                                               | 1<br>1      | method word equation / correct values <b>fractional bits</b> score 0<br>evaluation <b>accept</b> 54.4 kbit s <sup>-1</sup> ecf on <b>b(i)</b> sampling f<br><b>accept</b> 53.1 kbits (taking computer k = 1024)                                                                                                                                                                                                                                                                                                                                                  |
|          | C |     | <ul> <li>advantage : e.g. better speech reproduction / higher quality speech / more natural / more life-like speech / Ss or Xs sound clearer</li> <li>disadvantage: e.g. greater bandwidth / higher rate of transmission / bit rate needed so not so cost effective</li> <li>OR greater bandwidth so fewer calls per channel</li> </ul> | 1           | <ul> <li>accept less distortion</li> <li>not just higher and lower f could be coded / picked up</li> <li>not more detail / data / information / higher quality digital signal</li> <li>accept higher sampling f needed so requires faster circuits / processing at higher rates</li> <li>accept more memory to store / data compression needed</li> <li>not more noise could be picked up</li> <li>not just more expensive</li> <li>allow answers assuming system is unchanged ORA</li> <li>e.g. more likely to produce aliases if sampling f is same</li> </ul> |
|          |   |     | Total guestion 9                                                                                                                                                                                                                                                                                                                        | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Section B

| Question |   | on | Expected Answers                                                          | Marks | Additional Guidance                                                                                                                                                       |
|----------|---|----|---------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10       | а | i  | $R < P/I^2$ / = 2 x 10 <sup>3</sup> / (8 x 10 <sup>3</sup> ) <sup>2</sup> | 1     | <b>accept</b> $V = P/I = 0.25 V$ then $R = V/I$ for full credit                                                                                                           |
|          |   |    | = $3.1(3) \times 10^{-5}$ ( $\Omega$ )                                    | 1     | <b>not</b> just 3 x 10 <sup>-5</sup> ( $\Omega$ ) show that value<br><b>ORA</b> show that <i>P</i> = 1920 W for 2 marks                                                   |
|          |   | ii | V = IR                                                                    | 1     | method accept V = P/I                                                                                                                                                     |
|          |   |    | = $8\ 000\ \text{x}\ 3.13\ \text{x}\ 10^{-5}$ = 0.25 (V)                  | 1     | evaluation <b>accept</b> ecf on <i>R</i> value <b>ai</b><br><b>accept</b> 0.24 (V) using show that value                                                                  |
|          | b | i  | G = 1/R                                                                   | 1     |                                                                                                                                                                           |
|          |   |    | $\Rightarrow A = GL/\sigma  (= L/\sigma R)$                               | 1     | <b>must</b> have algebraic rearrangement for A expect credible flow                                                                                                       |
|          |   | ii | $= 10 / (5.9 \times 10^7 \times 3.13 \times 10^{-5})$                     | 1     | accept ecf on R from a                                                                                                                                                    |
|          |   |    | = $5.4 \times 10^{-3}$ (m <sup>2</sup> )                                  | 1     | <b>accept</b> (5.6(5) <b>OR</b> 5.7) x 10 <sup>-3</sup> (m <sup>2</sup> ) using show that <i>R</i> 5.5 x 10 <sup>-3</sup> (m <sup>2</sup> ) using 2 SF value for <i>R</i> |
|          |   |    | Total question 10                                                         | 8     |                                                                                                                                                                           |

G491

| Sect | ection B |     |                                                                              |       |                                                                                                                                                                                                              |  |  |
|------|----------|-----|------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Qu   | esti     | on  | Expected Answers                                                             | Marks | Additional Guidance                                                                                                                                                                                          |  |  |
| 11   | а        | i   | proportional up to 40 °C / initially / at lower T                            | 1     | <b>accept</b> $\epsilon \propto T$ with temperature qualification<br><b>not</b> just sensitivity remains constant                                                                                            |  |  |
|      |          |     | then increases at a higher rate / gradient increases / sensitivity increases | 1     | accept then increases at faster rate<br>not then increases faster / more rapidly<br>not exponential after 40 °C                                                                                              |  |  |
|      | а        | ii  | gradient / Δy / Δx / 0.23 x 10 <sup>-3</sup> / 40                            | 1     | correct method attempt in words / symbols<br>ignore POT errors for 1 <sup>st</sup> mark                                                                                                                      |  |  |
|      |          |     | = $5.8 \times 10^{-6}$ (V °C <sup>-1</sup> )                                 | 1     | evaluation <b>accept</b> values in range (5.6 to 5.9) x $10^{-6}$ unit <b>accept</b> in mV °C <sup>-1</sup> / $\mu$ V °C <sup>-1</sup><br><b>POT</b> error max 1                                             |  |  |
|      | b        | i   | 2 resistors (R, r) connected in series                                       | 1     | accept 2 resistors (R, r) share the p.d. / $\epsilon$<br>not just there are 2 resistors (R, r)                                                                                                               |  |  |
|      | b        | ii  | $V = \varepsilon - \varepsilon r / (R + r)$                                  | 1     | a correct first substitution / for application of $V = IR$ max 1                                                                                                                                             |  |  |
|      |          |     | $= \varepsilon \left( R + r - r \right) / \left( R + r \right)$              | 1     | clear correct cancellation of <i>r</i> terms                                                                                                                                                                 |  |  |
|      |          | iii | $V = (\epsilon x 15) / 15.3$                                                 | 1     | method correct substitution into equation                                                                                                                                                                    |  |  |
|      |          |     | = $\varepsilon \times 0.98$ (i.e. 2% low of $\varepsilon$ )                  | 1     | evaluation <b>accept</b> $\varepsilon$ = 1.02 V                                                                                                                                                              |  |  |
|      |          |     |                                                                              |       | <b>accept</b> numerical solutions on any chosen $\varepsilon$ value<br><b>max 1</b> if $\varepsilon$ dropped or ignored but 0.98 OR 1.02 achieved                                                            |  |  |
|      | С        |     | not c.r.o: max deflection is about 0.6 mm / sensitivity is incorrect         | 1     | AW <b>accept</b> max deflection < 1 mm / too small / unresolvable<br><b>accept</b> too small (thinking generally mm /V)<br><b>OR</b> too large (V/mm)                                                        |  |  |
|      |          |     | not d.v.m: reaches full scale deflection at about 35 °C                      | 1     | AW <b>accept</b> would not cover the higher temperatures /<br>input p.d. to meter would exceed its max reading at 100 °C<br><b>accept</b> f.s.d. / max reading too low<br><b>ignore</b> sensitivity comments |  |  |
|      |          |     | Total question 11                                                            | 11    |                                                                                                                                                                                                              |  |  |
|      |          |     | Total section B                                                              | 30    |                                                                                                                                                                                                              |  |  |

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

**OCR Customer Contact Centre** 

#### 14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

