GCE

Physics B (Advancing Physics)

Advanced Subsidiary GCE
Unit G491: Physics in Action

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Question		Expected Answers	Marks	Additional Guidance
1		(a) Ω; (b) W ; ${ }^{\text {(c) } \mathrm{C}}$	3	not any \equiv units not listed e.g. $\mathrm{A} \mathrm{V}^{-1}$; $\mathrm{J} \mathrm{s}^{-1}$; As
2		$\begin{aligned} & \text { extension }=L \times \text { strain } /=10 \times 3=30(\mathrm{~cm}) \\ & \text { total length }=30+10=40(\mathrm{~cm}) \end{aligned}$	1 1	method in words / numbers not credit for bare 30 cm accept $0.1 \times 3=0.3(\mathrm{~m})$ for method standalone method with evaluation allow ecf on extension value $+10(\mathrm{~cm})$ provided unit consistent and that the value added to 10 is clearly labelled extension (even if derived from a wrong formulation) accept bare 40 cm for 2 marks
3	a		2	one independent mark for each correct link not multiple links from one box on left if one line is not clearly crossed out
	b		1 1	one mark for each correct tick 3 ticks scores max 1 4 or more ticks scores 0
4	a	$\begin{aligned} & n=c / v \quad /=3 \times 10^{8} / 1.9 \times 10^{8} \\ & =1.6 \end{aligned}$	1 1	```method in words / symbols / numbers not just }\mp@subsup{v}{1}{}/\mp@subsup{v}{2}{ evaluation accept 1.58 apply SF penalty to more than 3 S.F. not 1.57 a.e.```

Question		Expected Answers	Marks	Additional Guidance
5	a	adds curvature to wavefronts / focusses wavefronts	1	AW accept waves converge / change curvature / curves waves not just wavefronts refract
	b	e.g. Iens thinner at edges so waves slowed for less time / get ahead OR refracts more at edges where surface is angled more for 2 marks	1 1	accept ora lens thicker at centre not just convex shape so waves slowed for longer / get held back OR wavefronts show distance of travel in equal time intervals allow reluctantly waves are slowed down more near the centre of lens BOD but penalise implication of different n values
6	a	(deforms under stress) and does not return to original size / shape (when stress is removed)	1	AW accept permanent deformation accept permanent change of atomic positions not just movement of atoms not has permanently changed state
	b	metals: atomic planes / ion planes / crystalline structure / close packed can slip / slide over each other OR long-chain polymers: coiled / random / cross-linked chains chains slip / slide by each other / tangled molecules straighten / line up	1 1	not any mark for recording choice of material marks require concept of slip ; in reasonable context allow AW accept dislocation mechanism explained accept bonds rotate / chains uncoil accept clear annotated diagrams for either structure max 1 if no mention of material / if incorrect material chosen

Section A

Question		Expected Answers	Marks	Additional Guidance
7	a	$\begin{aligned} & \text { (gradient of graph) } \quad \text { e.g. } 108 \times 10^{6} / 0.0006 \\ & \approx 1.8 \times 10^{11}(\mathrm{~Pa}) \quad / \approx 1.8 \times 10^{5} \mathrm{M}(\mathrm{~Pa}) \end{aligned}$	1 1	method any clear attempt to find gradient OR σ / ε ratio ignore POT errors for $1^{\text {st }}$ mark evaluation accept in range (1.77 to 1.83$) \times 10^{11}$ not any credit for inverse ratio 0/2 marks
	b	plot line of max and or min slope through \pm bars find max and or min value / difference in gradient OR using a point with error bars use the max and or min value from \pm bars to calculate max and or min value of Y.M. OR using a point with error bars estimate max \% error (strain) from \pm bar recognise this \% applies to original modulus	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AW also credit method from drawings on Fig. 7 check Fig. 7 e.g. one mark for a line of max/min slope through uncertainties accept if their answer implies uncertainty range / spread ignore any reference to \% error in stress accept $\pm \approx 5 \%$ estimate if no explanation for 1 mark accept $\approx 10 \%$ if their estimate implies uncertainty range for 1
		Total section A	21	

Section B

Question			Expected Answers	Marks	Additional Guidance
8	a		$\begin{aligned} & 7 \\ & 2^{7}=128 \quad / \quad \log _{2}(128)=7 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	not any other value must have explanation for $2^{\text {nd }}$ mark
	b		$\begin{aligned} & \text { pixels } \times \text { bits pixel }^{-1} /=700 \times 520 \times 7 /=2.5(5) \times 10^{6} \\ & =2.55 \times 10^{6} / 8=0.3(2) \times 10^{6} \text { bytes }(<1 \mathrm{Mbyte}) \end{aligned}$	1 1	method accept ecf on wrong value from a not any credit for number of pixels only $\mathbf{3 6 4 0 0 0}$ evaluation accept ecf from a only not pixels / 8 accept computer Mbyte $=1024^{2}$ gives 0.30(3) Mbyte
	c		correct distances from image e.g. 2.6 cm and 0.7 cm estimate ≈ 3.7 OR ratio in fractional form $2.6 / 0.7$ further reasoning / explanation image size \propto object length / distance from lens / image size \propto (distance $^{-1}$ image size $=$ constant $/$ distance (ratio) = length Atlantis / length Endeavour	1 1 1	$1^{\text {st }}$ mark for measured values only to nearest $\pm 1 \mathrm{~mm}$ but if ratio for $2^{\text {nd }}$ mark is in tolerance accept (not used markers) $2^{\text {nd }}$ mark for calculated ratio / bald est. between 3.1 and 4.5 If inverse ratio i.e 0.22 to 0.32 , max 1 for measured values $3^{\text {rd }}$ mark for supporting argument accept angle subtended argument QWC reasoning must be completely transparent for the award of $3 / 3$ marks otherwise max $2 / 3$
	d	i	$\begin{aligned} \text { pixels shuttle }^{-1} & \approx(2.6 \mathrm{~cm} / 9.3 \mathrm{~cm}) \times 520 \text { pixels } \\ & \approx 145 \text { pixels } \\ \text { length } & =145 \times 0.24=35 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept estimated number of pixels in range 138 to 153 accept length in range 33 to 37 m allow ecf on incorrect number of pixels
	d	ii	Using ratio from c $0.24 \times 3.7=0.89\left(\mathrm{~m} \mathrm{pixel}^{-1}\right)$ > OR Using length di / pixels for Endeavour $\begin{aligned} & =35 \mathrm{~m} / 39 \text { pixels } \\ & =0.90\left(\mathrm{~m}_{\text {pixel }} \mathrm{l}^{-1}\right) \end{aligned}$	1	accept answers in range 0.7 to 1.1 (m pixel ${ }^{-1}$) allow ecf on 0.24 x incorrect ratio from \mathbf{c} allow ecf on length from di / (33 to 45) pixels for Endeavour CLICK fit to height button to see earlier answers as well to check for ecf
			Total question 8	10	

Question			Expected Answers	Marks	Additional Guidance
9	a		3100 (Hz)	1	
	b	i	$\begin{aligned} & 6800(\mathrm{~Hz}) \\ & \text { high f are missed } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	value explanation accept aliases appear / spurious low fappear / require a minimum of two samples per cycle to detect that frequency accept sample at 2 x highest f present not just 2×3400 not signal becomes distorted
	b	ii	$\begin{array}{rlrll} b & =\log _{2}\left(V_{\mathrm{t}} / V_{\mathrm{n}}\right) / \log _{2}(250) & \text { OR } & 2^{8}=256 \\ & =7.9(7) & & \text { OR } & \\ & & & \end{array}$ e.g. with more bits signal resolution $\Delta V<V_{\text {noise }}$ so info is redundant / extra information is about details in noise not details in signal	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	method $\log _{2}$ evaluation OR comparison accept $2^{7}=128(<250)$ AW but must be a high level convincing explanation not any implication that more bits adds noise QWC answers should be well justified for the final mark to be awarded accept well annotated diagrams showing noise and total signal ranges and effect of more / fewer bits
	b	iii	$\begin{aligned} \text { rate } & =\text { sampling } \mathrm{f} \times \text { bits sample }^{-1} / 6800 \times 8 \\ & =5.4(4) \times 10^{4} \quad\left(\text { bit s }^{-1}\right) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	method word equation / correct values fractional bits score 0 evaluation accept $54.4 \mathrm{kbit} \mathrm{s}^{-1}$ ecf on $\mathbf{b}(\mathbf{i})$ sampling f accept 53.1 kbits (taking computer $\mathrm{k}=1024$)
	c		advantage : e.g. better speech reproduction / higher quality speech / more natural / more life-like speech / Ss or Xs sound clearer disadvantage: e.g. greater bandwidth / higher rate of transmission / bit rate needed so not so cost effective OR greater bandwidth so fewer calls per channel	1 1	accept less distortion not just higher and lower f could be coded / picked up not more detail / data / information / higher quality digital signal accept higher sampling f needed so requires faster circuits / processing at higher rates accept more memory to store / data compression needed not more noise could be picked up not just more expensive allow answers assuming system is unchanged ORA e.g. more likely to produce aliases if sampling f is same
			Total question 9	10	

Question			Expected Answers	Marks	Additional Guidance
11	a	i	proportional up to $40^{\circ} \mathrm{C} /$ initially $/$ at lower T then increases at a higher rate / gradient increases / sensitivity increases	1 1	accept $\varepsilon \propto T$ with temperature qualification not just sensitivity remains constant accept then increases at faster rate not then increases faster / more rapidly not exponential after $40^{\circ} \mathrm{C}$
	a	ii	gradient $/ \Delta \mathrm{y} / \Delta \mathrm{x} \quad / \quad 0.23 \times 10^{-3} / 40$ $=5.8 \times 10^{-6}\left(\mathrm{~V}^{\circ} \mathrm{C}^{-1}\right)$	1 1	correct method attempt in words / symbols ignore POT errors for $1^{\text {st }}$ mark evaluation accept values in range (5.6 to 5.9) $\times 10^{-6}$ unit accept in $\mathrm{mV}{ }^{\circ} \mathrm{C}^{-1} / \mu \mathrm{V}{ }^{\circ} \mathrm{C}^{-1}$ POT error max 1
	b	i	2 resistors (R, r) connected in series	1	accept 2 resistors (R, r) share the p.d. $/ \varepsilon$ not just there are 2 resistors (R, r)
	b	ii	$\begin{aligned} V & =\varepsilon-\varepsilon r /(R+r) \\ & =\varepsilon(R+r-r) /(R+r) \end{aligned}$	1 1	a correct first substitution / for application of $V=I R \max 1$ clear correct cancellation of r terms
		iii	$\begin{aligned} V & =(\varepsilon \times 15) / 15.3 \\ & =\varepsilon \times 0.98 \quad \text { (i.e. } 2 \% \text { low of } \varepsilon) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	method correct substitution into equation evaluation accept $\varepsilon=1.02 \mathrm{~V}$ accept numerical solutions on any chosen ε value max 1 if ε dropped or ignored but 0.98 OR 1.02 achieved
	C		not c.r.o: max deflection is about 0.6 mm sensitivity is incorrect not d.v.m: reaches full scale deflection at about $35^{\circ} \mathrm{C}$	1 1	AW accept max deflection $<1 \mathrm{~mm} /$ too small / unresolvable accept too small (thinking generally mm / V) OR too large (V / mm) AW accept would not cover the higher temperatures / input p.d. to meter would exceed its max reading at $100^{\circ} \mathrm{C}$ accept f.s.d. / max reading too low ignore sensitivity comments
			Total question 11	11	
			Total section B	39	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

