GCE

Physics B (Advancing Physics)

Advanced Subsidiary GCE
Unit G491: Physics in Action

Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1. Annotations available in Scoris

Annotation	Meaning
[10]	Benefit of doubt given
[40\%	Contradiction
\cdots	Incorrect response
[-5]	Error carried forward
\square	Follow through
[104]	Not answered question
-	Benefit of doubt not given
Lid	Power of 10 error
-	Omission mark
[197	Rounding error
$\Gamma 7$	Error in number of significant figures
\checkmark	Correct response
\square	Arithmetic error
?	Wrong physics or equation

Annotations on detailed mark scheme

Annotation	Meaning
I (1)	alternative and acceptable answers for the same marking point
reject	Separates marking points
not	Answers which are not worthy of credit
IGNORE	Answers which are not worthy of credit
ALLOW	Statements which are irrelevant
()	Answers that can be accepted
-	Underlined words must be present in answer to score a mark not essential to gain credit
ecf	Error carried forward
AW	Alternative wording
ORA reverse argument	

Subject Specific Marking Instructions.
The following questions should be annotated with ticks to show where marks have been awarded in the body of the text: 8(c), 10(b)(i)\&(ii). QWC ticks or crosses on pen symbol please.

Do not penalise $R E$ rounding errors more than once on the paper. SF penalty only on 9 (b) max 2 SF on uncertainty calculation.
Expect 'show that' calculations to be worked out to 1 figure beyond the value given.

Section A

Question		Answer	Marks	Guidance
3	(a)	$\begin{aligned} V_{\text {out }} & =R_{1} \times V_{\text {in }} /\left(R_{1}+R_{2}\right) \quad /=20 \times 6 \mathrm{~V} /(20+80) \\ & =1.2(\mathrm{~V}) \end{aligned}$	1 1	method in correct algebra / numbers accept resistance ratio $=$ voltage ratio arguments allow 1 mark for current $=0.060 \mathrm{~A} / 60 \mathrm{~mA}$ must clearly be a current evaluation must give answer to 2 SF for show that mark
	(b)	$V^{2} / R \quad l \quad(1.2)^{2} / 20$ $=0.072(\mathrm{~W})$	1 1	method in correct algebra / numbers accept $I^{2} R / I V$ only with correct substitution (formulae on data sheet) allow ecf on I OR V from (a) accept $(1.0)^{2} / 20$ from show that evaluation accept 0.050 (W) from show that not ecf on incorrect current within (b)
		Total	4	

Question		Answer	Marks	Guidance
4	(a)	$\begin{aligned} & \Delta R / \Delta T \quad l \quad=\quad(2500-1000) /(400-0) \\ & =3.8 \quad 1 \quad 3.75 c\left(\Omega^{\circ} \mathrm{C}^{-1}\right) \end{aligned}$	1 1	method for clear attempt at gradient in algebra / words / numbers accept Δ dependent / Δ independent OR $\Delta y / \Delta x$ not any credit for $R / T=1750 / 200=8.8\left(\Omega{ }^{\circ} \mathrm{C}^{-1}\right)$ not just mention of gradient evaluation accept in range 3.6 to $3.9\left(\Omega^{\circ} \mathrm{C}^{-1}\right)$ for other triangles
	(b)	constant (sensitivity) up to T in range 400 to $500^{\circ} \mathrm{C}$ (then) decreases (as T rises)	1 1	not to $600^{\circ} \mathrm{C} /$ above $500^{\circ} \mathrm{C}$ not R grows linearly with T accept curves down / levels off / approaches zero / gradient decreases not just line starts to curve
		Total	4	

Section A

Question		Answer		Marks	Guidance
5	(a)	$\begin{aligned} m & =v / u \quad l=0.01 / 10 \\ & =0.001 \end{aligned}$		1 1	method in algebra / words / numbers (formula not on data sheet) evaluation ignore - sign(s) accept fraction 1/1000
	(b)	$\begin{align*} P & =1 / f \quad / \quad=1 / v-1 / u \\ & =1 / 0.01-1 /(-10) \\ & =100 .(1) \quad \text { (D) } \tag{D} \end{align*}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	method recall of power of lens / manipulation of formula correct substitution (Cartesian - sign goes with value 10) evaluation accept $P=1 / f \approx 1 / v=100 \mathrm{D}$ for 3 marks allow 99.9 D (sign error) 2 marks max not $3^{\text {rd }}$ mark for negative final answers accept $P=1 / v+1 / u=100$.(1) (D) for 3 marks if fully consistent with real is positive sign convention but no part marks Look out for v and u values interchanged giving 100.1 (D), scores max 1 mark for formula rearranged or $P=1 / f$
			Total	5	

Question			Answer	Marks	Guidance
8	(a)	(i)	$\begin{aligned} & \text { stress / strain } \quad / \quad 14 \mathrm{MPa} / 0.082 \\ & =170 \\ & =170 \mathrm{MPa} / 170 \mathrm{MNm}^{-2} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	method evaluation accept 171 ignore POT errors here answer must have consistent POT with unit accept $1.7 \times 10^{8} \mathrm{~Pa} / \mathrm{N} \mathrm{m}^{-2}$
		(ii)	$\begin{array}{rlrl} F & =\sigma A \quad l & =14 \times 10^{6} \times 1.9 \times 10^{-7} \\ & =2.66 & (\mathrm{~N}) & / \\ 2.7 & (\mathrm{~N}) \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	method in algebra / words / numbers evaluation not 2.6 (N) RE (penalise RE only once on paper)
	(b)	(i)	any 2 from 4 points about the sample: plastic behaviour / very large increase in strain for small increase in stress / gets stiffer \quad OR larger $\Delta \sigma$ for small $\Delta \varepsilon \quad$ OR larger ΔF for small Δx up to $\times 6$ original length for breaking OR $\times 5$ at strain 4	2	accept will not return to original size / shape not inelastic accept strain increases at a high rate not rapidly / quickly accept starts to neck / tear not any credit for Y.M. decreases not easier / harder to stretch not any credit for molecular explanations here not any credit for just descriptions of what the graph does not any credit for then breaks
		(ii)	$\begin{aligned} & \text { breaking strain } \varepsilon=5.1 \\ & \qquad \begin{array}{l} x=\varepsilon L=5.1 \times 15 \mathrm{~cm} \\ =76.5(\mathrm{~cm}) \end{array} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	read from graph accept in range 5.05 to 5.15 method in algebra / words / numbers accept use of extension $=0.082 \times 15$ for method mark only evaluation expect in range 75.8 to 77.3 (cm) allow ecf on strains in range 5 to 5.5 for max 2 allow $2 / 3$ for bare 75 (cm)
	(c)		originally long chains are amorphous / crumpled / folded / random / spaghetti-like monomers rotate /bonds rotate / chains slip past each other / chains line up / disentangle / unfold / becomes more crystalline (inter / intra molecular / cross links / hydrogen bonds) bonds break OR once molecules aligned bonds themselves are being stretched QWC for any underlined term used correctly	1 1 1 1	accept suggestions for pre-elastic limit accept suggestions about cross links restricting movement or preventing return once broken not any credit here for macroscopic plastic behaviour accept good diagram evidence even if not labelled accept aligned molecules increase stiffness QWC mark only if one technical term has been appropriately used and spelled correctly
			Total	14	

Section B

Question			Answer	Marks	Guidance
9	(a)		4	1	
	(b)		$(0.001 \times 100 \% / 1.019)=0.1$ (\%)	1	accept 0.098\% but not more than 2 SF not 0.0981 (\%)
	(c)	(i)	$\begin{aligned} t & =Q / / \quad /=10(\mu \mathrm{C}) / 1.1(\mu \mathrm{~A}) / 10 \times 10^{-6} / 1.1 \times 10^{-6} \\ & =9.1(\mathrm{~s}) \end{aligned}$	1 1	method in algebra / words / numbers / units evaluation accept 9 (s) accept ORA showing $1.1 \mu(\mathrm{~A}) \times 10(\mathrm{~s})=11 \mu \mathrm{C}(>10 \mu \mathrm{C})$ not 3.6 s (using $2.8 \mu \mathrm{~A}$) but can score $1^{\text {st }}$ mark if method clear
		(ii)	$\begin{aligned} & R+r=\varepsilon / l /=1.019 /\left(1.1 \times 10^{-6}\right) \\ & R+r=926.4 \mathrm{k} \Omega \\ & R=926.4 \mathrm{k} \Omega-350 \Omega \approx 926 \mathrm{k} \Omega \\ & R \gg \quad / \quad r \text { negligible compared to } R \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	method not credit for $V=I R \quad$ OR $V=\varepsilon-I R$ allow $1 / 3$ for getting as far as $V=1.0186 \mathrm{~V}$ evaluation accept working to $2 \mathrm{SF} 930 \mathrm{k} \Omega$ max 2 if evaluating $R_{\text {meter }}$ only as $930 \mathrm{k} \Omega$ and no discussion of $r \quad$ OR for using $2.8 \mu \mathrm{~A}$ and r leading to $364 \mathrm{k} \Omega$
		(iii)	$\begin{aligned} V & =I r \quad l=1.1 \times 10^{-6} \times 350 \\ & =0.39 \mathrm{~m}(\mathrm{~V}) \quad 10.385 \mathrm{~m}(\mathrm{~V}) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { method not any ecf here not just } V=I R \\ & \text { evaluation accept } 3.85 \times 10^{-4}(\mathrm{~V}) \text { accept } 0.4 \mathrm{~m}(\mathrm{~V}) \\ & \text { accept other methods eg potential divider allow } 0.38 \mathrm{~m}(\mathrm{~V}) \end{aligned}$
	(d)		suggested problem explanation $l>2.8 \mu \mathrm{~A}$ $V<V_{\text {standard }} \quad / \quad V<\varepsilon$ $Q>10 \mu \mathrm{C}$ $V<\mathrm{V}_{\text {standard }} \quad \mathrm{V}<\varepsilon$ $\mathrm{V}<\mathrm{V}$ standard $/ V<\varepsilon$ $V_{\text {lost }}$ across r greater $V_{\text {lost }}$ across r greater systematic error meter over-reads $V_{\text {lost }}$ across r not all $\mathrm{V}_{\text {standard }}$ across meter	2	be flexible about exchanging problem \Leftrightarrow explanation so long as linked but needs quality somewhere take $\varepsilon=\mathrm{V}_{\text {standard }}=1.019 \mathrm{~V}$ problem accept too much current or charge (drawn) / too little time to make measurement not just more current so inaccurate not inaccurate calibration / less precise / higher \% error accept cell polarises / internal resistance increases
			Total	11	

Question			Answer	Marks	Guidance
10	(a)	(i)	4096	1	not just 2^{12}
		(ii)	$(1920 \times 1080 \times 12 \times 3)=74.6 \mathrm{M}($ bits)	1	needs 3 SF here for show that mark accept computer M giving 71.(2) M (bits)
		(iii)	$\begin{aligned} & =74.6 \times 10^{6} \times 120 / \text { bandwidth } \approx \text { bit rate } /=\text { bit rate } / 2 \\ & =9 .(0) \mathrm{G}(\mathrm{~Hz}) / 8.96 \mathrm{G}(\mathrm{~Hz}) / 8.95 \mathrm{G}(\mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	method accept use of show that value / factors of $1 / 2$ evaluation accept factors of $1 / 2$ i.e. $4.4(8) \mathrm{G}(\mathrm{Hz})$ allow ecf on incorrect bits from (ii) x 120
	(b)	(i)	waves are transverse / oscillations perp. to direction of travel unpolarised: all possible directions of oscillation / polarised: one direction of oscillation / For diagrams: directions need double headed arrows to score and labelled un/polarised	1 1 1	accept evidence from diagram / clear representation of transverse wave needs labels for oscillation + travel not just sine wave accept diagrams at least 3 directions of oscillation ignore wave travels in all directions accept diagram with one direction of oscillation / partially polarised light ignore wave travels in one direction if no diagrams only award 3 marks for very clear well expressed written answers
		(ii)	Up to 3 of following polarisation points: a polarising filter transmits plane polarised light fixed filter must be at 90° to L-crystal (polarisation direction) / forms crossed polar filters which do not transmit light / block light Up to 2 of following switching points (to a max 4 total): when switched by signal from TV to control glasses L-crystal filter switched on by voltage ; voltage switched from one eye / lens to other alternately ; TV signal synchronised with frame rate	4	AW accept polarising filter only allows one direction of vibration not filters in opposite directions allow other workable switching solutions / sensible details QWC final mark only awarded if four points clearly explained
			Total	11	
			Total Section B	36	
			Total for paper	60	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

