



# **Physics B (Advancing Physics)**

Advanced Subsidiary GCE

Unit G491: Physics in Action

# Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

## 1. Annotations available in Scoris

| Annotation | Meaning                                |
|------------|----------------------------------------|
| 1.1001     | Benefit of doubt given                 |
| [H•]]]     | Contradiction                          |
| ×          | Incorrect response                     |
| 1-19-1     | Error carried forward                  |
|            | Follow through                         |
|            | Not answered question                  |
| 2.000      | Benefit of doubt not given             |
| LIT-) a    | Power of 10 error                      |
|            | Omission mark                          |
|            | Rounding error                         |
| 87         | Error in number of significant figures |
| <b>V</b>   | Correct response                       |
|            | Arithmetic error                       |
| 2          | Wrong physics or equation              |

Annotations on detailed mark scheme

| Annotation | Meaning                                                       |
|------------|---------------------------------------------------------------|
| 1          | alternative and acceptable answers for the same marking point |
| (1)        | Separates marking points                                      |
| reject     | Answers which are not worthy of credit                        |
| not        | Answers which are not worthy of credit                        |
| IGNORE     | Statements which are irrelevant                               |
| ALLOW      | Answers that can be accepted                                  |
| ()         | Words which are not essential to gain credit                  |
| _          | Underlined words must be present in answer to score a mark    |
| ecf        | Error carried forward                                         |
| AW         | Alternative wording                                           |
| ORA        | Or reverse argument                                           |

Subject Specific Marking Instructions.

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text: 8(c), 10(b)(i)&(ii). QWC ticks or crosses on pen symbol please.

Do not penalise RE rounding errors more than once on the paper. SF penalty only on 9 (b) max 2 SF on uncertainty calculation. Expect 'show that' calculations to be worked out to 1 figure beyond the value given.

| Section A |
|-----------|
|-----------|

| Qı | lestio | on |       | Answer            |       | Marks | Guidance                     |
|----|--------|----|-------|-------------------|-------|-------|------------------------------|
| 1  |        |    |       |                   |       | 3     | all 4 lines correct scores 3 |
|    |        |    | units | equivale          | ents  |       | 2 / 3 lines correct scores 2 |
|    |        |    | A     | J s <sup>-1</sup> |       |       | 1 line correct scores 1      |
|    |        |    | V     |                   |       |       |                              |
|    |        |    | W     |                   |       |       |                              |
|    |        |    | Ω     |                   |       |       |                              |
|    |        |    |       | ·                 |       |       |                              |
|    |        |    |       |                   |       |       |                              |
|    |        |    |       |                   | Total | 3     |                              |

| Question |  | on | Answer     |        | Marks                                           | Guidance |                              |
|----------|--|----|------------|--------|-------------------------------------------------|----------|------------------------------|
| 2        |  |    |            |        |                                                 | 3        | all 4 lines correct scores 3 |
|          |  |    | properties |        | definitions                                     |          | 2 / 3 lines correct scores 2 |
|          |  |    | stiff      |        | the force per unit cross-sectional area         |          | 1 line correct scores 1      |
|          |  |    | stress     | $\sim$ | difficult to indent or scratch                  |          |                              |
|          |  |    | hard       |        | a small strain for a large stress on a material |          |                              |
|          |  |    | tough      |        | needs a large energy to break and create a      |          |                              |
|          |  |    |            |        | new fracture surface                            |          |                              |
|          |  |    |            |        |                                                 |          |                              |
|          |  |    |            |        |                                                 |          |                              |
|          |  |    |            |        | Total                                           | 3        |                              |

Section A

| Q | Question |  | Answer                                                                                          | Marks | Guidance                                                                                                                                                                                                                                                                                                                  |
|---|----------|--|-------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (a)      |  | $V_{\text{out}} = R_1 \times V_{\text{in}} / (R_1 + R_2) / = 20 \times 6 \text{ V} / (20 + 80)$ | 1     | method in correct algebra / numbers<br><b>accept</b> resistance ratio = voltage ratio arguments<br><b>allow</b> 1 mark for current = 0.060 A / 60 mA must clearly<br>be a current                                                                                                                                         |
|   |          |  | = 1.2 ( V )                                                                                     | 1     | evaluation must give answer to 2 SF for show that mark                                                                                                                                                                                                                                                                    |
|   | (b)      |  | $V^2 / R / (1.2)^2 / 20$<br>= 0.072 (W)                                                         | 1     | method in correct algebra / numbers<br><b>accept</b> $I^2 R / IV$ only with correct substitution<br>(formulae on data sheet)<br><b>allow</b> ecf on I OR V from (a)<br><b>accept</b> $(1.0)^2 / 20$ from show that<br>evaluation <b>accept</b> 0.050 (W) from show that<br><b>not</b> ecf on incorrect current within (b) |
|   |          |  | Total                                                                                           | 4     |                                                                                                                                                                                                                                                                                                                           |

| Question |     | on | Answer                                                             | Marks | Guidance                                                                                                                                                                                                                                                                            |
|----------|-----|----|--------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4        | (a) |    | $\Delta R / \Delta T \qquad / \qquad =  (2500 - 1000) / (400 - 0)$ | 1     | method for clear attempt at gradient in algebra / words /<br>numbers <b>accept</b> $\Delta$ dependent / $\Delta$ independent OR $\Delta$ y/ $\Delta$ x<br><b>not</b> any credit for $R / T = 1750 / 200 = 8.8$ ( $\Omega \ ^{\circ}C^{-1}$ )<br><b>not</b> just mention of gradient |
|          |     |    | = $3.8$ / $3.75$ ( $\Omega  {}^{\circ}C^{-1}$ )                    | 1     | evaluation <b>accept</b> in range 3.6 to 3.9 ( $\Omega$ °C <sup>-1</sup> ) for other triangles                                                                                                                                                                                      |
|          | (b) |    | constant (sensitivity) up to <i>T</i> in range 400 to 500 °C       | 1     | <b>not</b> to 600 °C / above 500 °C <b>not</b> $R$ grows linearly with $T$                                                                                                                                                                                                          |
|          |     |    | (then) decreases ( as <i>T</i> rises )                             | 1     | accept curves down / levels off / approaches zero / gradient decreases<br>not just line starts to curve                                                                                                                                                                             |
|          |     |    | Total                                                              | 4     |                                                                                                                                                                                                                                                                                     |

| Section A |
|-----------|
|-----------|

| Q | uestic | on | Answer                    | Marks | Guidance                                                                 |
|---|--------|----|---------------------------|-------|--------------------------------------------------------------------------|
| 5 | (a)    |    | m = v/u / = 0.01 / 10     | 1     | method in algebra / words / numbers (formula not on data                 |
|   |        |    |                           |       | sheet)                                                                   |
|   |        |    | = 0.001                   | 1     | evaluation <b>ignore</b> - sign(s) <b>accept</b> fraction 1/1000         |
|   | (b)    |    | P = 1 / f / = $1/v - 1/u$ | 1     | method recall of power of lens / manipulation of formula                 |
|   |        |    | = 1 / 0.01 – 1 / (-10)    | 1     | correct substitution (Cartesian – sign goes with value 10)               |
|   |        |    | = 100.(1) (D) / 100 (D)   | 1     | evaluation <b>accept</b> P = $1/f \approx 1/v = 100$ D for 3 marks       |
|   |        |    |                           |       | allow 99.9 D (sign error) 2 marks max                                    |
|   |        |    |                           |       | <b>not</b> 3 <sup>rd</sup> mark for negative final answers               |
|   |        |    |                           |       | <b>accept</b> $P = 1/v + 1/u = 100.(1)$ (D) for 3 marks if fully         |
|   |        |    |                           |       | consistent with real is positive sign convention but no part             |
|   |        |    |                           |       | marks                                                                    |
|   |        |    |                           |       | Look out for                                                             |
|   |        |    |                           |       | <i>v</i> and <i>u</i> values interchanged giving 100.1 (D), scores max 1 |
|   |        |    |                           |       | mark for formula rearranged or $P = 1 / f$                               |
|   |        |    | Total                     | 5     |                                                                          |

| Question | Answer                                                                                                                          | Marks | Guidance                                                                                                                                                                                                         |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6        | method started: 3.5 cm / 13.2 cm                                                                                                | 1     | Accept 1 <sup>st</sup> mark for evidence of estimate                                                                                                                                                             |  |
|          | OR (3.5 cm x 3072 pixels ) / (9.8 cm) OR $\approx$ 310 pixel cm <sup>-1</sup>                                                   |       | length arrow / length image / $\approx \frac{1}{4}$ /                                                                                                                                                            |  |
|          |                                                                                                                                 |       | length arrow / height image / $\approx \frac{1}{3}$                                                                                                                                                              |  |
|          | method cont: pixels per arrow length of $1100 \pm 100$ pixels                                                                   | 1     | $4096 / 4 \approx 1000$ pixels / $3072 / 3 \approx 1000$ pixels<br>accept Pythagorean solutions / components of arrow                                                                                            |  |
|          | evaluation ( distance = resolution x no. pixels )<br>= 30 light years pixel <sup>-1</sup> x 1100 pixels<br>= 33 000 light years | 1     | evaluation <b>accept</b> in range $(33 \pm 3) \times 1000$ light years<br><b>allow</b> only max 2 for correct methods with larger<br>measuring errors in extended range $(33 \pm 10) \times 1000$ light<br>years |  |
|          | Total                                                                                                                           | 3     |                                                                                                                                                                                                                  |  |

### Mark Scheme

| Question |  | on | Answer          |    | Guidance |
|----------|--|----|-----------------|----|----------|
| 7        |  |    | 1 5.0           | 1  |          |
|          |  |    | 2 0.5 (kW)      | 1  |          |
|          |  |    |                 |    |          |
|          |  |    | Total           | 2  |          |
|          |  |    | Total section A | 24 |          |

| Section E | 3 |
|-----------|---|
|-----------|---|

| Question |     | on   | Answer                                                                   | Marks | Guidance                                                                |
|----------|-----|------|--------------------------------------------------------------------------|-------|-------------------------------------------------------------------------|
| 8        | (a) | (i)  | stress / strain / 14 MPa / 0.082                                         | 1     | method                                                                  |
|          |     |      | = 170                                                                    | 1     | evaluation accept 171 ignore POT errors here                            |
|          |     |      | = 170 MPa / 170 MNm <sup>-2</sup>                                        | 1     | answer must have consistent POT with unit                               |
|          |     |      |                                                                          |       | accept 1.7 x 10 <sup>8</sup> Pa / N m <sup>-2</sup>                     |
|          |     |      |                                                                          |       |                                                                         |
|          |     | (ii) | $F = \sigma A$ / = 14 x 10 <sup>6</sup> x 1.9 x 10 <sup>-7</sup>         | 1     | method in algebra / words / numbers                                     |
|          |     |      | = 2.66 (N) / 2.7 (N)                                                     | 1     | evaluation <b>not</b> 2.6 (N) RE (penalise RE only once on              |
|          |     |      |                                                                          |       | paper)                                                                  |
|          | (b) | (i)  | any 2 from 4 points about the sample: plastic behaviour /                | 2     | accept will not return to original size / shape not inelastic           |
|          |     |      |                                                                          |       |                                                                         |
|          |     |      | very large increase in strain for small increase in stress /             |       | accept strain increases at a high rate not rapidly / quickly            |
|          |     |      |                                                                          |       | accept starts to neck / tear                                            |
|          |     |      | gets stiffer OR larger $\Delta \sigma$ for small $\Delta \varepsilon$ OR |       | <b>not</b> any credit for Y.M. decreases <b>not</b> easier / harder to  |
|          |     |      | larger $\Delta F$ for small $\Delta x$ /                                 |       | stretch                                                                 |
|          |     |      |                                                                          |       | <b>not</b> any credit for molecular explanations here                   |
|          |     |      | up to x 6 original length for breaking OR x 5 at strain 4                |       | <b>not</b> any credit for just descriptions of what the graph does      |
|          |     |      |                                                                          |       | <b>not</b> any credit for then breaks                                   |
|          |     |      |                                                                          |       |                                                                         |
|          |     | (ii) | breaking strain $\varepsilon$ = 5.1                                      | 1     | read from graph <b>accept</b> in range 5.05 to 5.15                     |
|          |     |      | $x = \varepsilon L = 5.1 \times 15 \text{ cm}$                           | 1     | method in algebra / words / numbers                                     |
|          |     |      |                                                                          |       | accept use of extension = 0.082 x 15 for method mark only               |
|          |     |      | = 76.5 (cm)                                                              | 1     | evaluation <b>expect</b> in range 75.8 to 77.3 (cm)                     |
|          |     |      |                                                                          |       | allow ecf on strains in range 5 to 5.5 for max 2                        |
|          |     |      |                                                                          |       | allow 2/3 for bare 75 (cm)                                              |
|          | (C) |      | originally long chains are <u>amorphous</u> / crumpled / folded /        | 1     | accept suggestions for pre-elastic limit                                |
|          |     |      | <u>random</u> / spaghetti-like ;                                         |       | <b>accept</b> suggestions about <u>cross links</u> restricting movement |
|          |     |      | monomers rotate / bonds rotate / chains slip past each                   | 1     | or preventing return once broken                                        |
|          |     |      | other / chains line up / disentangle / unfold / becomes                  |       | <b>not</b> any credit here for macroscopic plastic behaviour            |
|          |     |      | more <u>crystalline</u> ;                                                |       | accept good diagram evidence even if not labelled                       |
|          |     |      | (inter / intra molecular / cross links / hydrogen bonds)                 | 1     |                                                                         |
|          |     |      | bonds break OR once molecules aligned bonds                              |       | accept aligned molecules increase stiffness                             |
|          |     |      | themselves are being stretched ;                                         |       | QWC mark only if one technical term has been                            |
|          |     |      | QWC for any underlined term used correctly                               | 1     | appropriately used and spelled correctly                                |
|          |     |      | Total                                                                    | 14    |                                                                         |

| Section | В |
|---------|---|
|---------|---|

| Question |     | on    | Answer                                                                                                                         | Marks | Guidance                                                                                                                                                                                                    |
|----------|-----|-------|--------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9        | (a) |       | 4                                                                                                                              | 1     |                                                                                                                                                                                                             |
|          | (b) |       | $(0.001 \times 100\% / 1.019) = 0.1 (\%)$                                                                                      | 1     | accept 0.098% but not more than 2 SF not 0.0981 (%)                                                                                                                                                         |
|          | (C) | (i)   | t = Q / I / = 10 (µC) / 1.1 (µA) / 10 x 10 <sup>-6</sup> / 1.1 x 10 <sup>-6</sup>                                              | 1     | method in algebra / words / numbers / units                                                                                                                                                                 |
|          |     |       | = 9.1 (s)                                                                                                                      | 1     | evaluation <b>accept</b> 9 (s)<br><b>accept</b> ORA showing 1.1 $\mu$ (A) x 10 (s) = 11 $\mu$ C (>10 $\mu$ C)<br><b>not</b> 3.6 s (using 2.8 $\mu$ A) but can score 1 <sup>st</sup> mark if method<br>clear |
|          |     | (ii)  | $R + r = \varepsilon / I / = 1.019 / (1.1 \times 10^{-6})$                                                                     | 1     | method <b>not</b> credit for $V = IR$ OR $V = \varepsilon - IR$                                                                                                                                             |
|          |     |       | $R + r = 926.4 \text{ k}\Omega$                                                                                                | 1     | allow 1/3 for getting as far as $V = 1.0186 V$<br>evaluation <b>accept</b> working to 2 SF 930 k $\Omega$                                                                                                   |
|          |     |       | $R$ = 926.4 k $\Omega$ - 350 $\Omega$ $\approx$ 926 k $\Omega$ /                                                               | 1     | <b>max 2</b> if evaluating $R_{\text{meter}}$ only as 930 k $\Omega$ and no discussion                                                                                                                      |
|          |     |       | R >> r / r negligible compared to R                                                                                            |       | of $r$ OR for using 2.8 $\mu$ A and $r$ leading to 364 k $\Omega$                                                                                                                                           |
|          |     | (iii) | V = /r / = 1.1 x 10 <sup>-6</sup> x 350                                                                                        | 1     | method <b>not</b> any ecf here <b>not</b> just $V = IR$                                                                                                                                                     |
|          |     |       | = 0.39 m(V) / 0.385 m(V)                                                                                                       | 1     | evaluation <b>accept</b> 3.85 x 10 <sup>-4</sup> (V) <b>accept</b> 0.4 m(V)<br><b>accept</b> other methods eg potential divider allow 0.38 m(V)                                                             |
|          | (d) |       | suggested problem explanation                                                                                                  | 2     | be flexible about exchanging problem $\Leftrightarrow$ explanation so<br>long as linked but needs quality somewhere<br>take $\epsilon = V_{standard} = 1.019 V$                                             |
|          |     |       | $I > 2.8 \mu\text{A}$ $V < V_{\text{standard}}$ $/ V < \varepsilon$                                                            |       | problem <b>accept</b> too much current or charge (drawn) /                                                                                                                                                  |
|          |     |       | $Q > 10 \ \mu C$ $V < V_{\text{standard}} / V < \varepsilon$                                                                   |       | too little time to make measurement                                                                                                                                                                         |
|          |     |       | $V \leq V_{\text{standard}} / V \leq \varepsilon$ $V_{\text{lost}}$ across $r$ greater<br>$V_{\text{lost}}$ across $r$ greater |       | <b>not</b> inaccurate calibration / less precise / higher % error                                                                                                                                           |
|          |     |       | systematic error $V_{\text{lost}}$ across r                                                                                    |       |                                                                                                                                                                                                             |
|          |     |       | meter over-reads not all V <sub>standard</sub> across meter                                                                    |       | accept cell polarises / internal resistance increases                                                                                                                                                       |
|          |     |       | Total                                                                                                                          | 11    |                                                                                                                                                                                                             |

| Section | В |
|---------|---|
|---------|---|

| Question |     | on    | Answer                                                                         | Marks | Guidance                                                                 |
|----------|-----|-------|--------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------|
| 10       | (a) | (i)   | 4096                                                                           | 1     | not just 2 <sup>12</sup>                                                 |
|          |     | (ii)  | (1920 x 1080 x 12 x 3) = 74.6 M(bits)                                          | 1     | needs 3 SF here for show that mark                                       |
|          |     |       |                                                                                |       | accept computer M giving 71.(2) M(bits)                                  |
|          |     | (iii) | = 74.6 x 10 <sup>6</sup> x 120 / bandwidth $\approx$ bit rate / = bit rate / 2 | 1     | method <b>accept</b> use of show that value $/$ factors of $\frac{1}{2}$ |
|          |     |       | = 9.(0) G(Hz) / 8.96 G(Hz) / 8.95 G(Hz)                                        | 1     | evaluation accept factors of ½ i.e. 4.4(8) G(Hz)                         |
|          |     |       |                                                                                |       | allow ect on incorrect bits from (ii) x 120                              |
|          | (b) | (i)   | waves are transverse / oscillations perp to direction of                       | 1     | accept evidence from diagram / clear representation of                   |
|          | (~) | (.)   | travel                                                                         |       | transverse wave needs labels for oscillation + travel                    |
|          |     |       |                                                                                |       | not just sine wave                                                       |
|          |     |       | unpolarised: all possible directions of oscillation /                          | 1     | accept diagrams at least 3 directions of oscillation                     |
|          |     |       |                                                                                |       | ignore wave travels in all directions                                    |
|          |     |       | nolarised: one direction of oscillation /                                      | 1     | accent diagram with one direction of oscillation / partially             |
|          |     |       |                                                                                | 1     | polarised light                                                          |
|          |     |       | For diagrams: directions need double headed arrows to                          |       | ignore wave travels in one direction                                     |
|          |     |       | score and labelled un/polarised                                                |       | if no diagrams only award 3 marks for very clear well                    |
|          |     |       |                                                                                |       | expressed written answers                                                |
|          |     | (ii)  | Lin to 3 of following polarisation points:                                     | 4     |                                                                          |
|          |     | (11)  | a polarising filter transmits plane polarised light                            | 4     | accept polarising filter only allows one direction of vibration          |
|          |     |       | fixed filter must be at 90° to L-crystal (polarisation direction)              |       | <b>not</b> filters in opposite directions                                |
|          |     |       | / forms crossed polar filters ;                                                |       |                                                                          |
|          |     |       | which do not transmit light / block light ;                                    |       | <b>allow</b> other workable switching solutions / sensible details       |
|          |     |       |                                                                                |       |                                                                          |
|          |     |       | Up to 2 of following switching points (to a max 4 total):                      |       | <b>OWC</b> final mark only awarded if four points clearly                |
|          |     |       | L-crystal filter switched on by voltage                                        |       | explained                                                                |
|          |     |       | voltage switched from one eve / lens to other alternately                      |       |                                                                          |
|          |     |       | TV signal synchronised with frame rate                                         |       |                                                                          |
|          |     |       | Total                                                                          | 11    |                                                                          |
|          |     |       | Total Section B                                                                | 36    |                                                                          |
| 1        |     |       | Total for paper                                                                | 60    |                                                                          |

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

**OCR Customer Contact Centre** 

#### **Education and Learning**

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553



