GCE

Physics B (Advancing Physics)

Advanced Subsidiary GCE

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail:
publications@ocr.org.uk

Qn	Expected Answers	Marks	Additional guidance
1	(a) $W(1)$; (b) F and s (1)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept any obvious references
2	(a) A (1); (b) $B(1)$; (c) $A(1)$	3	
3	third box (added as vectors) (1); sixth box $\left(p \propto A^{2}\right)(1)$	2	2 correct boxes and 4 blanks = 2 marks; one correct box and at least four blanks = 1 mark 2 correct boxes, 1 incorrect and 3 blanks = 1 mark No other combinations score any marks.
4	```(a) \(E=h f=6.6 \times 10^{-34} \mathrm{~J} \times 4.8 \times 10^{14} \mathrm{~Hz}=3.2 \times 10^{-19} \mathrm{~J}\) (1); (b) \(\ln 1 \mathrm{~s}, N=50 \times 10^{-3} \mathrm{~J} / 3.2 \times 10^{-19} \mathrm{~J}\) \(=1.6 \times 10^{17}(1) \mathrm{m}(1) \mathrm{e}\)```	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	If rounded, E must be correctly rounded to get the mark in (a) Allow ecf from incorrectly rounded E in (a) but not if wildly wrong
5	(a) $\lambda=c / f=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} / 909 \times 10^{3} \mathrm{~Hz}=330 \mathrm{~m}$ (1) m (1)e (b) waves from two transmitters interfere destructively(1); inter-nodal distance $=1 / 2 \lambda$ so spacing $=165 \mathrm{~m}$ (1)	2 2	owtte e.g. cancel allow 150 m from $\lambda=1 / 2300 \mathrm{~m}$ Accept standing wave argument
6	(Speed very high therefore) very short times to be measured/distance in lab too small (1); Δt likely to be large fraction of t owtte(1)	2	$2^{\text {nd }}$ mark for relating time measurement to its uncertainty, e.g. ref. to large \%age uncertainty in t or to small time resolution of timer
7	$\begin{aligned} & \text { (a) } v^{2}=u^{2}+2 \mathrm{as}=\left(12 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}+2\left(-9.8 \mathrm{~m} \mathrm{~s}^{-2}\right)(3.0 \mathrm{~m})(1) \\ &=85.2 \mathrm{~m}^{2} \mathrm{~s}^{-2} \text { so } v=\sqrt{85.2} \mathrm{~m}^{2} \mathrm{~s}^{-2}=9.2 \mathrm{~m} \mathrm{~s}^{-1}(1) \mathrm{m}(1) \mathrm{e} \\ & \text { (b) gets there on way up and on way back down (1) } \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & \hline \end{aligned}$	a \& s need opposite signs for 1st mark
	Section A total:	20	

Qn	Expected Answers	Marks	Additional guidance
	Section B		
8 (a)	(i) regular vertical movements/changes in water level (1); some parts don't move at all (1); No movement along surface (1) (ii) A at ends and N in centre(1); so length $=1 / 2 \lambda$ (iii) $1 / 2 T=48 \mathrm{~s}$ from Fig. $8.1 \Rightarrow T=96 \mathrm{~s}$ (1); $\begin{align*} & f=1 / 96 \mathrm{~Hz}=0.010 \mathrm{~Hz}(1) ; \tag{1}\\ & v=f \lambda=0.010 \mathrm{~Hz} \times 1600 \mathrm{~m}=17 \mathrm{~m} \mathrm{~s}^{-1}(1) \mathrm{m}(1) \mathrm{e} \end{align*}$	2 2 4	Any two points. Or $1 / 4 T=24 \mathrm{~s}$ or $v=\lambda / T(1)$; $=1600 \mathrm{~m} / 96 \mathrm{~s}(1) \mathrm{s}=17 \mathrm{~m} \mathrm{~s}^{-1}(1) \mathrm{e}$ correct rounding needed for evaluation mark
(b)	different wind speed may produce different standing wave pattern (1); $\begin{aligned} & T \downarrow 2 \times \text { to } 48 \mathrm{~s} \Rightarrow f \uparrow 2 \times(1) ; \\ & \Rightarrow \lambda \downarrow 2 \times \text { to } 800 \mathrm{~m}(1) ; \end{aligned}$ will fit as standing wave (with 2 half-wavelengths) (1);	3	Any three points. e.g. stronger wind \Rightarrow higher frequency Spotting that f doubles gets this a mark or $T \downarrow 2 \times$ to $48 \mathrm{~s} \Rightarrow \lambda \downarrow 2 \times$ from $v=\lambda / T$ above (2); QWC: Last marking point here is 'logical steps' point; do not give 3 marks if there are any errors of physics in the argument i.e. CON implied
(c)	(Very much) longer/bigger so waves take longer to go up and back or $T \uparrow \Rightarrow f \downarrow \Rightarrow \lambda \uparrow$ (assuming v unchanged) $\Rightarrow \mathrm{A}-\mathrm{N}-\mathrm{A}$ distance \uparrow so lake is longer (1)	1	accept different in depth (shallower), so waves travel slower
	Total:	12	

Qn	Expected Answers	Marks	Additional guidance
9 (a)	(i) $t=v / a=12.0 \mathrm{~m} \mathrm{~s}^{-1} / 9.8 \mathrm{~m} \mathrm{~s}^{-2}=1.22 \mathrm{~s}(1) /$ ora from 1 s gives $9.8 \mathrm{~m} \mathrm{~s}^{-1}$ so $12.0 \mathrm{~m} \mathrm{~s}^{-1}$ takes a bit longer. (1) (ii) $s=1 / 2(u+v) t=1 / 2\left(0+12 \mathrm{~m} \mathrm{~s}^{-1}\right) \times 1.22 \mathrm{~s}=7.3 \mathrm{~m}(1) \mathrm{m}(1) \mathrm{e}$ (iii) for free fall $t=1.22 \mathrm{~s}$ for steady speed $t=(150 \mathrm{~m}-7.3 \mathrm{~m}) / 6 \mathrm{~m} \mathrm{~s}^{-1}=23.8 \mathrm{~s}$ (1) total time $=23.8 \mathrm{~s}+1.22 \mathrm{~s}=25.0 \mathrm{~s}$ (1)	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	$\text { ORA } v=\sqrt{ }(2 a s)=\sqrt{ }\left(2 \times 9.8 \mathrm{~m} \mathrm{~s}^{-2} \times 7 \mathrm{~m}\right)=11.7 \mathrm{~m} \mathrm{~s}^{-1} \approx 12 \mathrm{~m} \mathrm{~s}^{-1}(1) \mathrm{m}(1) \mathrm{e}$ last mark requires the two times to be added
(b)	curve starts out on line and gradient drops gradually (1); decelerates as curve from $v \leq 12 \mathrm{~m} \mathrm{~s}^{-1}$ (1); asymptotic with $6 \mathrm{~m} \mathrm{~s}^{-1}$ (1); decelerating phase parallel but sooner (1)	2	Any two points; if second part is worth 2, do not penalise for poor beginning First part should be convex curve second part concave curve; do not give if it starts too high areas under graphs are equal.
(c)	(i) longer time $=$ smaller acceleration so smaller force/ extends distance over which landing force is exerted on lander so same work done by smaller force (1) (ii) $a=6.0 \mathrm{~m} \mathrm{~s}^{-1} / 0.25 \mathrm{~s}=24 \mathrm{~m} \mathrm{~s}^{-2}$ (1) $F=m a=53 \mathrm{~kg} \times 24 \mathrm{~m} \mathrm{~s}^{-2}=1270 \mathrm{~N} \approx 1300 \mathrm{~N}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Or momentum changes over shorter time so smaller force $\text { Or } \Delta p=318 \mathrm{~N} \text { s (1); so } F=318 \mathrm{~N} \text { s/0.25 s = } 1270 \mathrm{~N} \text { (1) }$ $\text { Allow also } m a+m g=1790 \mathrm{~N}$
	Total:	10	

Qn	Expected Answers	Marks	Additional guidance
10(a)	(i) all in phase/facing same direction owtte (ii) 3 A	1	
(b)	(i) One phasor rotation corresponds to λ (1); $120^{\circ}=1 / 3$ rotation for the extra $\lambda / 3$ (1) (ii) Arrows correctly drawn in circles in Fig. 10.4 (1); Three arrows tip-to-tail in triangle with directions consistent with Fig. 10.4(1) (iii) $\sin \theta=\Delta x /(b / 3)$ (1); $=(\lambda / 3) /(b / 3)=\lambda / \mathrm{b} \text { so } \lambda=b \sin \theta(1)$	2	Must explicitly link λ to 1 rotation for this mark. Judge by eye ('20 to' and ' 20 past' in clock terms) Allow other valid vector addition methods, e.g. parallelogram (judge by eye). this diagram identifying θ and $b / 3$ is enough for first mark and second mark is for substituting $\Delta x=\lambda / 3$ and rearranging. Do not give this with ecf from incorrect diagram.
(c)	$\sin \theta=\lambda / \mathrm{b}=2.4 \mathrm{~cm} / 6.0 \mathrm{~cm}=0.40 \Rightarrow \theta=23.6^{\circ} \approx 24^{\circ}(1) \mathrm{m}(1) \mathrm{e}$	2	
	Total:	10	
11(a)	(i) system in equilibrium/ (horizontal) forces balance (1); F is (equally) shared between two horizontal components of tension (1) $\text { (ii) } \begin{aligned} 1 / 2 F=70 \mathrm{~N}=T \cos \left(36^{\circ}\right) \Rightarrow T=70 \mathrm{~N} / 0.81 & =86.5 \mathrm{~N} \\ & \approx 90 \mathrm{~N}(1) \mathrm{m}(1) \mathrm{e} \end{aligned}$	2 2	NOT $F=2 T$ but $F=2 T \cos \theta$ is OK, as is vector addition diagram. $2^{\text {nd }}$ mark must be correct physics referring to horizontal components. Calculation giving double the correct answer, then divided by two with no justification $=(0)$; vector triangle involving 140 N is probably wrong.
(b)	(i) KE gain $=$ work done $=F s=85 \mathrm{~N} \times 0.80 \mathrm{~m}=68 \mathrm{~J}$ (1) (ii) energy loss/resistive force due to friction etc. (1); tension in string/bow drops (as it returns to vertical) (1); angle θ becomes greater (1); so horizontal component becomes less (1)	1 3	Allow max 1 mark for arguments based on energy loss/resistive forces. Last mark is consequent upon identifying increase in angle QWC is organise info. clearly \& coherently
Total:		8	
Section B total:		40	

Qn	Expected Answers	Marks	Additional guidance
12 (a)	Calculating at least two values of $v^{2}(1)$; Identify $\operatorname{Max} v^{2}$ and $\operatorname{Min} v^{2}$ or $\operatorname{Max} v$ and $\operatorname{Min} v(1)$ Direct reference to range bar -6.4 to $7.4 \mathrm{~m}^{2} \mathrm{~s}^{-2}(1)$	3	Max $v^{2}=\left(2.72 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}=7.4 \mathrm{~m}^{2} \mathrm{~s}^{-2} / \operatorname{Min} v^{2}=\left(2.52 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}=6.4 \mathrm{~m}^{2} \mathrm{~s}^{-2}$ Accept 'all the values lie within the range' for second mark. Allow an ecf for third marking point
(b)	Δh is too small to plot on any sensible scale (1) (percentage) uncertainty in h small (1) (percentage) uncertainty in $v\left(^{2}\right.$) much greater(1)	2	Any two from three
(c)	Assumption: reading for $h 0.6 \mathrm{~m}$ is an outlier and should be ignored (in the first instance) (1) Best fit line within bounds (template on Scoris) (1) Correct method using at least 0.1 m from x -axis (1)m gradient ($19.4 \mathrm{~m} \mathrm{~s}^{-2}$) (1)e	4	Assumption needs to be clear - either written or outlier circled/identified Best fit line does not go through origin ecf from own line
(d)	(i) Energy losses would result in E_{k} being too smali(1) E_{k} is too large so not a possible explanation (1) (ii) recognises source of systematic error (1); explains positive intercept in terms of v being too big (1)	4	h measured from bottom instead of centre of card (1); h values all smaller than true distance fallen so v^{2} values all bigger than expected owte(1)
	Total:	13	
13 (a)	$0.01 / 1.0=0.01 \theta=\arctan (0.01)=0.0099997=0.5729^{\circ}$ $\sin \theta=0.0099995$ which is very close to $0.01(1) / \sin \theta=$ $x \nmid\left(x^{2}+L^{2}\right)(1) m(1) e$	2	
(b)	(i) 3.8 (1) ± 0.3 (1) (ii) Percentage/fractional uncertainties for Δx is 8% while Δd is 4% (1) so x contributes most (1) (iii) $\Delta L / L / 0.6 \% /$ percentage uncertainty is very much smaller (than (b ii)) (1) $\begin{aligned} & \text { (iv) } \lambda_{\text {min }}=(0.25-0.01) \times 10^{-3} \mathrm{~m} \times(3.8-0.3) \times 10^{-3} \mathrm{~m}(1) / 1.72 \mathrm{~m} \\ &=4.88 \times 10^{-7} \mathrm{~m}(1) \mathrm{m}(1) \mathrm{e} \\ & \text { (v) } \Delta \lambda=50 \times 10^{-7} \mathrm{~m}-4.87 \times 10^{-7} \mathrm{~m}=7 \times 10^{-8} \mathrm{~m} \end{aligned}$ (iv) λ	$\begin{aligned} & 2 \\ & 3 \\ & 1 \\ & 3 \\ & 1 \end{aligned}$	allow ecf from (b) (i) Third mark is dependent on calculations - allow ecf from own calculations $1^{\text {st }}$ mark is taking smallest $d \& x$ If answer is not $=4.88 \times 10^{-7} \mathrm{~m}$ then check for ecf from (b) (i) Allow 2 s.f. $\left(7.2 \times 10^{-8} \mathrm{~m}\right)$
(c)	$\%$ uncertainty in x doubles/increases (to 16%) (1) \% uncertainty in d halves/decreases (to 2\%) (1); Δx was already the major contributor (1) so $\Delta \lambda$ increases (1)	3	Three from four marking points Can plug in values and recalculate
	Total:	15	

Qn	Expected Answers	Marks	Additional guidance
14 (a)	$\begin{aligned} & 360^{\circ}=2 \pi \times 2.0 \mathrm{~m}=12.6 \mathrm{~m}(1) ; \\ & (1 / 6)^{\circ}=12.6 \mathrm{~m} /(360 \times 6)=0.0058 \mathrm{~m} \approx 6 \mathrm{~mm}(1) \end{aligned}$	2	
(b)	(i) $40^{\circ}+10^{\prime}+6^{\prime}=(40+16 / 60)^{\circ}=40.27^{\circ}$ (1)m(1)e (1) 4sf (ii) percentage uncertainty $=100 \times(1 / 60) / 40.27$ $=0.04 \%(1) \mathrm{m}(1) \mathrm{e}$	3 2	One mark for reading scale correctly ($40^{\circ} 16^{\prime}$) One mark for correct conversion to decimal degrees s.f mark should be consistent with candidate's answer Allow uncertainty of $\pm^{1} / 2^{\prime}$ giving answer 0.02% Watch e.c.f. from (i)
(c)	allows identification/elimination of outliers(1); mean value is a better estimate than any individual reading (1); reduces uncertainty (in mean) (1); identifies range of/uncertainty in data (1); gives more confidence in mean value. (1)	3	Any 3 points Do not accept 'can calculate mean' unless qualified 'Makes answer more accurate' by itself is not enough for marking points 3 or 4 Accept 'reliable' / 'repeatable' as 'more confidence in mean value'.
(d)	Stars have known/consistent/predictable positions (1); Planetary positions can be compared with fixed stars (1); allowed him to check accuracy of his quadrant(s) (1); and to compare his different instruments (1)	2	Äny two points Idea of reference points (for planetary movement). 'Fixed stars' without any more is just repeating the question. 'calibrate his equipment' (from article) gains this mark.
	Total:	12	
	Section C total:	40	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2011

