GCE

Physics B (Advancing Physics)

Advanced Subsidiary GCE

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations

Annotation	Meaning
『! ${ }^{\text {P }}$	Benefit of doubt given
Cला	Contradiction
3	Incorrect response
[1+5	Error carried forward
[-I	Follow through
[T:	Not answered question
0	Benefit of doubt not given
Prif	Power of 10 error
A	Omission mark
[1]	Rounding error
¢	Error in number of significant figures
\checkmark	Correct response
5.5	Arithmetic error
5	Wrong physics or equation

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
$\mathbf{(1)}$	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
$\mathbf{()}$	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Calculated answers are frequently shown to 3 significant figures for the convenience of markers. Candidates are expected to express answers to an appropriate number of significant figures, often 2.

Incorrect rounding is an evaluation error
Sig fig errors should be penalised only where indicated

SECTION A

Question		Answer	Marks	Guidance
1	(a)	speed and velocity	1	either order
	(b)	force and velocity	1	either order
	(c)	power = energy (/time)	1	
2		$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
3		ticks in 2 nd box $(\lambda \uparrow) \& 5^{\text {th }}$ box $(D \uparrow)$	2	Completely correct (two appropriate ticks and 3 empty or cancelled boxes) $=2$ marks; One error only(one appropriate tick and no more than one other tick) $=1$ mark
4	(a)	$0.5 \mathrm{~kg} \times 9.8 \mathrm{~m} \mathrm{~s}^{-2} \times 8.0 \mathrm{~m}=39.2 \mathrm{~J}=39 \mathrm{~J}(1)$	1	
	(b)	$\begin{aligned} & 1 / 20.5 \mathrm{~kg}\left(15 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}-39 \mathrm{~J}(1) \mathrm{m}=17 \mathrm{~J}(1) \mathrm{s} \\ & v=\sqrt{ }(2 \times 17 \mathrm{~J} / 0.5 \mathrm{~kg})=8.3 \mathrm{~m} \mathrm{~s}^{-1}(1) \mathrm{e} \end{aligned}$	3	Method mark for initial KE - PE Can use $v^{2}=u^{2}+2$ as $1(\mathrm{~m}) 1(\mathrm{e})$ and (1) for as negative If as is positive then the (e) mark is awarded only if a comment is made on the unreasonable value of $v\left(19.5 \mathrm{~m} \mathrm{~s}^{-1}\right)$
5		$a=F / m=(25 \mathrm{~N}-18 \mathrm{~N}) / 2.6 \mathrm{~kg}=(-) 2.7 \mathrm{~m} \mathrm{~s}^{-2}(1) \mathrm{m}(1) \mathrm{e}$	2	Method mark for force difference/mass $6.9 \mathrm{~m} \mathrm{~s}^{-2} / 9.6 \mathrm{~m} \mathrm{~s}^{-2} / 16.5 \mathrm{~m} \mathrm{~s}^{-2}$ for (1)

Question		Answer	Marks	Guidance
6	(a)	$\begin{aligned} & f=c / \lambda=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} / 5.89 \times 10^{-7} \mathrm{~m}(1) \mathrm{m} \\ & \quad=5.09 \times 10^{14} \mathrm{~Hz}(1) \mathrm{e} \\ & E=h f=3.36 \times 10^{-19} \mathrm{~J}(1) \approx 3 \times 10^{-19} \mathrm{~J} \end{aligned}$	3	Allow use of $F=h c / \lambda$: recall of equation (1) followed by (1) m (1) e
	(b)	$\begin{aligned} & \mathrm{N}=100 \mathrm{~W} / 3.36 \times 10^{-19} \mathrm{~J}=2.97 / 2.98 \times 10^{20}(1) \approx \\ & 3.0 \times 10^{20} \\ & \text { all energy becomes light owtte }(1) \end{aligned}$	2	Allow own value from 6a, but do not award first mark if rounding is incorrect. Use of $3.0 \times 10^{-19} \mathrm{~J}$ photon ${ }^{-1} \Rightarrow 3.33 \times 10^{20}$ photons s ${ }^{-1}$ If candidate makes assumption about efficiency in calculation, award the second mark at that point.
7		Correct method (1) Candidate's chosen method correctly followed through to give a result (1) answer between 0.20 and 0.22 m (1)	3	Demonstration that distance = area under the graph gets the first mark. This should be close to the whole correct area, more than just a triangle joining $(0,0)$ to $(0.03,11)$. Consistent application of own method. This also applies if the candidate draws a straight line from $(0,0)$ to $(0.03,11)$ and then uses area of the triangle, which is also true if $s=1 / 2(u+v) t$ is used: this gives 0.165 m . Use of $s=v t$ is 0 marks.
		Section A Total	23	

SECTION B

Question			Answer	Marks	Guidance
8	(a)		node-node distance $=1 / 2 \lambda(1)$	1	allow 'each loop is $1 / 2 \lambda$ ' owtte or any clear indication that the length of the string is $1 / 2 \lambda$
- (b)			$\begin{aligned} & c=f \lambda=82 \mathrm{~Hz} \times 1.3 \mathrm{~m}=106.6 \mathrm{~m} \mathrm{~s}^{-1} \approx 100 \mathrm{~m} \mathrm{~s}^{-1}(1) \mathrm{m} \mathrm{(1)} \\ & \mathrm{e} \end{aligned}$	2	Watch for $c=\lambda / T$ used incorrectly.
	(c)	(i)	$\begin{aligned} & T=\mu v^{2}=8.4 \times 10^{-3} \mathrm{~kg} \times\left(106.6 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} \\ & =95.45 / 95.5 / 95 \mathrm{~N}(1) \mathrm{m}(1) \mathrm{e} \end{aligned}$	2	$100 \mathrm{~m} \mathrm{~s}^{-1}$ gives $84 \mathrm{~N}, 107 \mathrm{~m} \mathrm{~s}^{-1}$ gives 96 N .
		(ii)	(same T and) smaller $\mu \Rightarrow$ greater v and greater $v \Rightarrow$ greater f (for same λ) (1)	1	Accept use of formula
	(d)		```waves in both directions (1); reflected/returned/bounces back at end (1); idea of superposition / interference (of these 2 waves) (1); node = zero amplitude/no oscillation (1); antinode = maximum amplitude/oscillation (1); node at each end (1); antinodes midway between nodes or vice versa (1)```	3	Any 3 points QWC: correct use and spelling of e.g. superposition, interference, node, antinode, frequency, wavelength If QWC is not adequate (i.e. misuse of technical terms) then do not award more than $2 / 3$
			Total	9	

SECTION C

Question			Answer	Marks	Guidance
12	(a)	(i)	$\begin{aligned} & \text { mean }=1.1(1) \mathrm{s}(1) \\ & \text { spread }=0.2(0) \mathrm{s}(1) \end{aligned}$	2	allow 2 s.f. for spread but no more
		(ii)	$1.6 \mathrm{~s}>2 \times 0.2 \mathrm{~s}$ from 1.1 s (1)	1	ecf from own mean and spread. Must have appropriate decision as to whether it is an outlier.
		(iii)	$\mathrm{v}=2 \times 165 \mathrm{~m} / 1.1 \mathrm{~s}=300 \mathrm{~m} \mathrm{~s}^{-1}(1)$	1	Allow ecf from (a) (i) use of 1.11 s gives $297 \mathrm{~m} \mathrm{~s}^{-1}$
	(b)		Any reasonable suggestion (1) explanation either of the source of the uncertainty/ or of the effect on the measurement(1)	2	
	(c)		Improvement (1) explanation (1)	2	eg electronic timing/recording of sound, greater distance to reflecting wall; explanation related to suggested improvement. Improved technique leading to increased reliability/accuracy.
			Total	8	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

