Physics B (Advancing Physics)

Advanced Subsidiary GCE

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in Scoris

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
*	Incorrect response
ECF	Error carried forward
FT	Follow through
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
\wedge	Omission mark
RE	Rounding error
SF	Error in number of significant figures
\checkmark	Correct response
AE	Arithmetic error
2	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific

 conventions).| Annotation | Meaning |
| :---: | :--- |
| \boldsymbol{I} | alternative and acceptable answers for the same marking point |
| $(\mathbf{1})$ | Separates marking points |
| reject | Answers which are not worthy of credit |
| not | Answers which are not worthy of credit |
| IGNORE | Statements which are irrelevant |
| ALLOW | Answers that can be accepted |
| $\mathbf{()}$ | Words which are not essential to gain credit |
| - | Underlined words must be present in answer to score a mark |
| ecf | Error carried forward |
| AW | Alternative wording |
| ORA | Or reverse argument |
| owtte | Or words to that effect |

1. Annotations should be made as follows:

- For both QWC questions $10 \mathrm{~d} \& 12 \mathrm{c}$, and put \times next to pencil icon if QWC not awarded
- \quad in any question where part marks are awarded, put \checkmark at point of award for each mark awarded so that ticks $=$ marks total for that part for any question with a candidate response which does not gain marks, put \times or ${ }^{\wedge}$ as appropriate
- additional blank pages ($26 \& 27$) should be annotated if there is no working on them and if marked with \wedge if they are blank. These pages are be appended to the bottom of 13(c)(ii) and are easily accessed if you click the 'fit vertically' icon ($11^{\text {th }}$ on the icon bar).

2. Calculated answers are shown to 3 significant figures for the convenience of markers. Candidates are expected to express answers to an appropriate number of significant figures, often 2 . In this paper, excessive number of sig. figs. Is penalised in 11(c)(ii) only.
3. 'Show that' calculations need evidence of evaluation but rounding error should not be penalised. Accept reverse argument.

Question		Answer	Marks		
$\mathbf{1}$	(a)	Nm	1		
	(b)	$\mathrm{J} \mathrm{s}^{-1}$	1		
	(c)		$\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$	1	
				Total	3

Question Answer		Marks			
$\mathbf{2}$	(a)	A	1		
	(b)	C	1		
	(c)	B	1		
				1	

Question		Answer	Marks	Guidance	
$\mathbf{3}$		$1^{\text {st }}$ and 5 ${ }^{\text {th }}$ boxes and no others	2	One mark each. If both correct plus one extra tick, 1 mark only.	
			Total	$\mathbf{2}$	

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |
| $\mathbf{4}$ | (a) | energy per second, $E=11 \mathrm{~W} \times 0.45=4.95 \mathrm{~J}(1) \mathrm{m} ;(1) \mathrm{e}$ | 2 | Allow rounding to 4.9 or 5.0 J |
| | (b) | photon energy, $E=h f=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s} \times 6.0 \times 10^{14} \mathrm{~Hz}$
 $=3.96 \times 10^{-19} \mathrm{~J}(1) \mathrm{m}(1) \mathrm{e}$
 number of photons $\mathrm{s}^{-1}=4.95 \mathrm{~J} / 3.96 \times 10^{-19} \mathrm{~J}=1.25 \times 10^{19}(1)$ | 3 | |
| | | Allow ecf from (a)
 Allow use of own value for photon energy for the $3^{\text {rd }}$
 marking point as this mark is independent. | | |
| Allow rounding 1.2 or 1.3×10^{19} | | | | |

Question		Answer	Marks	Guidance	
$\mathbf{5}$	(a)		$1^{\text {st }}$ box (doubling λ and halving b)	1	No marks if any extra tick present
	(b)	Added tip-to-tail they form a closed shape/they curl up and close	1	allow a sketch of at least 3 similar arrows tip-to-tail. allow other valid vector representations of zero resultant from at least 3 components	
			Total	$\mathbf{2}$	

Question		Answer	Marks	Guidance
6	(a)	1500 N (1); forwards/in the direction the car is moving (1)	2	Allow an arrow, or 'right' (assumed relative to the page) but reject 'east' or 'bearing 90 "
	(b)	$a=F / m=1500 \mathrm{~N} / 1940 \mathrm{~kg}=0.773 \mathrm{~m} \mathrm{~s}^{-2}(1) \mathrm{m} ;(1) \mathrm{e}$	2	e.c.f own answer to (a)
	(c)	$\begin{aligned} & P=F v=5800 \mathrm{~N} \times 22 \mathrm{~m} \mathrm{~s}^{-1}=127600 \mathrm{~W} \\ & =130000 \mathrm{~W}(1) \mathrm{m} ;(1) \mathrm{e} \end{aligned}$	2	if any force other than 5800 N used, allow max (1) for correct calculation with own force. Penalise rounding errors (>3sf) on this question.
		Total	6	
		Section A Total	21	

Question			Answer	Marks	Guidance
8	(a)		waves reflected at end/waves travelling both directions and superpose/interfere (1); to give places where they (always) superpose/interfere destructively to give zero amplitude /nodes (1); to give positions where they superpose /interfere constructively to give maximum amplitude/antinodes (1)	3	Allow 'cancel' or '(180°) out of phase' or 'in antiphase Allow 'add' or 'in phase'
	(b)		$\begin{aligned} & \lambda=2 \times 1.8 \mathrm{~m} / 6=0.6 \mathrm{~m} \\ & v=f \lambda=50 \mathrm{~Hz} \times 0.6 \mathrm{~m}=30 \mathrm{~m} \mathrm{~s}^{-1}(1) \mathrm{m} ;(1) \mathrm{e} \end{aligned}$	2	allow use of equation from (c) award 1 mark for use of wrongly deduced λ
	(c)		$\begin{aligned} & \text { each 'loop' is } 1 / 1 / \lambda(1) ; \\ & n \times 1 / 2 \lambda=1.8 \mathrm{~m} \Rightarrow \lambda_{(n)}=2 \times 1.8 \mathrm{~m} / n(1) \end{aligned}$	2	Must be clear from response or this mp is not awarded Approach must be algebraic (possibly in words) not arithmetic
	(d)		example (1); correct description of formation and type of wave involved (1)	2	Context must be clear, e.g. wind instrument, microwave oven, laboratory demonstration Can be longitudinal/transverse or sound (not 'air') /microwaves in the above
			Total	9	

Question			Answer	Marks	Guidance
10	(a)		at 0° there are both red and green maxima (which add) (1)	1	Must show that they understand that both red and green are observed in this direction. Allow 'red and green not diffracted at this angle' or 'colours don't split up'. Minimal response is 'it contains both red and green light.'
	(b)	(i)	$d=1.0 \times 10^{-3} \mathrm{~m} / 820=1.22 \times 10^{-6} \mathrm{~m}\left(\approx 1 \times 10^{-6} \mathrm{~m}\right)$	1	See general instruction 16 about 'show that' questions.
		(ii)	$\begin{aligned} & n \lambda=d \sin \theta \Rightarrow d=n \lambda / \sin \theta \\ & =1 \times 635 \times 10^{-9} \mathrm{~m} / \sin \left(31.4^{\circ}\right)=1.22 \times 10^{-6} \mathrm{~m}(1) \mathrm{m} ;(1) \mathrm{e} \end{aligned}$	2	See general instruction 16 about 'show that' questions.
	(c)		$2^{\text {nd }}$ order red maximum would require $\begin{aligned} & n \lambda=d \sin \theta \Rightarrow 2 \times 635 \times 10^{-9} \mathrm{~m}=1.22 \times 10^{-6} \mathrm{~m} \times \sin \theta \\ & \Rightarrow \sin \theta=1.04(1) \text {; which is not possible (1) } \end{aligned}$	2	allow use of $d=1 \mu \mathrm{~m}$ giving $\sin \theta=1.27$ other valid methods are possible, eg $d<2 \lambda$ (1); so cannot get a path difference of 2λ (1) ignore 'so $\theta>90^{\circ}$ '
	(d)		Energy of green photon: $E=h f=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s} \times 5.3 \times 10^{14} \mathrm{~Hz}=3.50 \times 10^{-19} \mathrm{~J}(1) \text {; }$ Energy of red photon: $E=h f=6.6 \times 10^{-34} \mathrm{~J} \mathbf{s} \times 4.7 \times 10^{14} \mathrm{~Hz}=3.10 \times 10^{-19} \mathrm{~J}(1)$ Energy from $2.4 \mathrm{~V}=2.4 \times 1.6 \times 10^{-19} \mathrm{~J}=3.8 \times 10^{-19} \mathrm{~J}$ which is enough for both colours (1); Energy from $2.1 \mathrm{~V}=2.1 \times 1.6 \times 10^{-19} \mathrm{~J}=3.4 \times 10^{-19} \mathrm{~J}$ which is enough for red but not green (1) energy calculations above can be combined as: voltage required for green $\begin{aligned} & =\left(6.6 \times 10^{-34} \mathrm{~J} \times 5.3 \times 10^{14} \mathrm{~Hz}\right) / 1.6 \times 10^{-19} \mathrm{~J} \\ & =3.5 \times 10^{-19} \mathrm{~J} / 1.6 \times 10^{-19} \mathrm{~J}=2.19(1) ; \\ & (2.4 \mathrm{~V}>2.19 \mathrm{~V} \text { but }) 2.1 \mathrm{~V}<2.19 \mathrm{~V}(1) ; \end{aligned}$ voltage required for red $\begin{aligned} & =\left(6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s} \times 4.7 \times 10^{14} \mathrm{~Hz}\right) / 1.6 \times 10^{-19} \mathrm{~J} \\ & =3.1 \times 10^{-19} \mathrm{~J} / 1.6 \times 10^{-19} \mathrm{~J}=1.94(1) ; \\ & 1.94 \mathrm{~V}<2.1 \mathrm{~V}(\text { or } 2.4 \mathrm{~V})(1) \end{aligned}$	4	Four marks are: green photon energy (1); red photon energy (1); energy from 2.4 V related to photon energy (1); energy from 2.1 V related to photon energy (1) Energy available at the two voltages can include the photon energy calculations via calculations of the threshold frequencies, viz. 2.4 V is enough for any $f \leq 3.8 \times 10^{-19} \mathrm{~J} / h=5.82 \times 10^{14}$ Hz (i.e. both colours) 2.1 V is enough for any $f \leq 3.4 \times 10^{-19} \mathrm{~J} / h=5.09 \times 10^{14}$ Hz (i.e. red but not green) QWC is 'form and style appropriate to purpose' and requires relevant calculations for both red and green photons and a concluding comment. In the absence of calculations, allow smaller voltage means less energy released (1); red photons are less energetic than green ones (1); and so need a lower voltage to released them (1);
			Total	10	
			Section B Total	39	

Question			Answer	Marks	Guidance
11	(a)		Sensor A (90-34)/(20-10) = 56/10 = 5.6 (1); Sensor B (33-8)/(20-10) =25/10 = $2.5(1)$; units for both are $\mathrm{mV}{ }^{\circ} \mathrm{C}^{-1}$ or $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ (1)	3	Allow ± 2 on ΔV, i.e. 5.4-5.8 \& 2.3 to 2.7 respectively sensitivity of B can be measured over any range allow eg $\mathrm{V}^{\circ} \mathrm{C}^{-1}$ if attempt at conversion made, even if incorrectly done
	(b)	(i)	more sensitive (over that range) (1)	1	owtte
		(ii)	Linear / more sensitive over the greater part of the range (1)	1	or 'sensitivity is constant'. accept more sensitive at higher temperatures
	(c)	(i)	$2.6 \mathrm{mV} \sim 1{ }^{\circ} \mathrm{C} \Rightarrow 0.1 \mathrm{mV} \sim 0.1 / 2.6{ }^{\circ} \mathrm{C}=0.0385{ }^{\circ} \mathrm{C}$ (1)m; (1)e	2	ecf from (a).
		(ii)	$\Delta \theta=100 \mathrm{mV} /$ sensitivity of sensor $\mathrm{B}\left(2.5 \mathrm{mV}^{\circ} \mathrm{C}^{-1}\right)$ Or determine $\Delta \theta$ from any two points 100 mV apart (1) m; answer in range $38^{\circ} \mathrm{C}$ to $42^{\circ} \mathrm{C}$ (1)e	2	allow ecf from (a) eg $(47,100)$ and $(7,0)$ - may need to check graph bald answer in range gets 2 marks no evaluation mark if >3 sig figs
			Total	9	

Question			Answer	Marks	Guidance
12	(a)	(i)	$v^{2}: 4.54$ and 17.31 (1); $\sin \theta 0.57$ (1)	2	
		(ii)	Plotted points (2); best fit line (1)	3	all 3 in tolerance (allow $\pm 1 / 2$ small division) = (2); 2 correct = (1) by eye; may or may not go through origin
	(b)	(i)	Gradient from graph (1) m ; Evaluation of gradient (1) e; $\text { units }=\mathrm{m}^{2} \mathrm{~s}^{-2} \text { or } \mathrm{m}^{2} / \mathrm{s}^{2}(1)$	3	Need to have line \& $\Delta(\sin \theta) \geq 0.1$ for method mark allow use of data points from table if close to the line (allow gradient of own line ecf) allow this mark for use of data points even if no line expect value in range 23-29
		(ii)	$\begin{aligned} & \text { component of weight down ramp } F \text { is clearly identified and } \\ & =m g \sin \theta(1) ; \\ & a=F / m(=g \sin \theta)(1) \end{aligned}$	2	accept F correctly labelled on diagram for first mark if linked to $m g \sin \theta$ vertical acceleration would be $(m g / m=) g(1)$; component of g down ramp $=g \sin \theta(1)$
		(iii)	$\begin{aligned} & u=0 \mathrm{~m} \mathrm{~s}^{-1} \text { so } v^{2}=2 a s=2(g \sin \theta) s=2 g s \sin \theta(1) ; \\ & \text { gradient }=2 g s=2 g \times 1.4 \mathrm{~m}=2.8(\mathrm{~m}) g(1) \end{aligned}$	2	($u=0$ not necessary, but may be seen) must be algebraic treatment, not arithmetic
		(iv)	$g=$ (gradient)/ $2.8(1) \mathrm{m}, \mathrm{e}$	1	ecf own gradient (candidate may recalculate it) Accept clear and correct suvat methods
	(c)		Identify factor affecting value of g obtained (1);(1); Correctly linked to affect on calculated value of $g(1) ;(1)$	4	allow systematic error or uncertainty QWC is organise information clearly and coherently. This would not be awarded unless the effect of both factors on the final value is identified.
			Total	17	

Question			Answer	Marks	Guidance
13	(a)	(i)	0.1 s to $0.5 \mathrm{~s} \mathrm{(1);}$	1	ignore number of sig figs
		(ii)	$3.2 \mathrm{~km} / 300000 \mathrm{~km} \mathrm{~s}^{-1}=1.07 \times 10^{-5} \mathrm{~s} \approx 10^{-5} \mathrm{~s}(1) ;$	1	See general instruction 16 about 'show that' questions.
		(iii)	$10^{-5} \mathrm{~s}$ « answer to (a)(i) (so could not be detected)(1); compared with $3.2 \mathrm{~km} /($ answer to $(\mathrm{a})(\mathrm{i})) \approx 6$ to $30 \mathrm{~km} \mathrm{~s}^{-1}$ (1)	2	first mark is for comparing (a)(i) and (ii) second mark is for using (a)(i) with the 3.2 km
	(b)	(i)	$\begin{aligned} & \text { \% uncertainty }=\left(50 \mathrm{~km} \mathrm{~s}^{-1} \times 100 \%\right) /\left(299910 \mathrm{~km} \mathrm{~s}^{-1}\right) \\ & =0.0167 \%=0.02 \%(1) ; \end{aligned}$ so uncertainty should be thought of as small (1)	2	Can consider as a fraction (0.00017 or $1 / 6000$) but needs a quantitative comparison for the first mark Second mark can only be awarded if a calculation has been done
		(ii)	uncertainty is </ \approx speed correction (1); difference no longer negligible/two speeds now distinguishable/able to confidently assign a particular (higher) value for c (1)	2	
		(iii)	```difference = (299 910-299 792.458) \mp@subsup{\textrm{km s}}{}{-1}=118(\mp@subsup{\textrm{km s}}{}{-1}) 118 (km s-1) (1); This is> quoted uncertainty (of 50 km s-1}\mathrm{) M may have underestimated his uncertainty (1)```	2	$1^{\text {st }}$ mark is for calculating the values $2^{\text {nd }}$ mark is comparing the values for sensible comment on the quality of the uncertainty estimate. Can also compare 299792.458 with (299 910 - 50)
	(c)	(i)	hard to find centre (to either with greater precision than about $1 / 2 \mathrm{~cm}$) because each hotspot is irregular and large.	1	NOT it's on a 1cm grid so that is the resolution owtte
		(ii)	inter-hotspot distance $\approx 1 / 2 \lambda \approx 6 \mathrm{~cm} \Rightarrow \lambda=12 \mathrm{~cm}(1)$; $c=f \lambda=2.45 \times 10^{9} \mathrm{~Hz} \times 0.12 \mathrm{~m}=2.94 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}(1) ;$ uncertainty in measurement is about 1 cm in 6 cm , so uncertainty in $c=2.94 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} / 6=0.49 \times 10^{8}$	3	allow $5 \mathrm{~cm} \leq 1 / 2 \lambda \leq 7 \mathrm{~cm}$; must get λ for this mark can use own λ can use own λ and may use uncertainty other than $1 / 6$ if deduced in (c)(i)
			Total	14	
			Section C Total	40	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

A
PART OF THE CAMBRIDGE ASSESSMENT

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

