

Physics B (Advancing Physics)

Advanced GCE G494

Rise and Fall of the Clockwork Universe

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Mark Scheme

June 2010

Question	expected answer	mark	Additional guidance
1a	N kg ⁻¹	1	
1b	J kg ⁻¹ K ⁻¹	1	
2a	$E = 0.5CV^2 = 1.2(15) \times 10^{-3} \text{ J}$	1	ignore anything more than two sig. figs e.g 1.21×10^{-3} for [1]
2b	(current is) flow of charge (off capacitor,	1	ignore references to discharging
	through circuit);		not just charge on capacitor decreases
			accept electrons as charge
			accept I = Q/t or wtte for [1]
		1	
	p.d. across capacitor/resistor decreases (as capacitor loses charge)		
	OR		
	rate of charge release proportional to		
	charge (on capacitor)		
3a	$D = \frac{Nm}{m} = (\frac{3p}{m})$	1	look for $D = Nm/V$
	V c^{2}		<i>N</i> = 1 earns [0]
3b	$\sqrt{c^2} = \sqrt{\frac{3p}{D}} = 500 \text{ m s}^{-1}$	1	
3c	gas particles change direction;	1	ignore references to random
	because they collide (with other particles);	1	ignore description of random walk
4a	$N = \frac{A}{\lambda} = \frac{1.6 \times 10^5}{7.6 \times 10^{-10}} = 2.1 \times 10^{14}$	1	
4b	$A = A_0 e^{-\lambda t} = 4.7 \times 10^4 \text{ Bq}$	1	$N = 2.11 \times 10^{14}$ gives 4.75×10^4 Bq for [1] ignore sign of answer

G494		1	Mark Scheme	June 2010
				-
5	EITHER	2	each correct response for [1]	
			remember Don't Care	
	D and C			
6a	$N = \frac{\rho V}{kT} = 3.1 \times 10^{24}$	1	look for at least two sig. figs in their answer, rounding to 3.1×10^{24}	_
			accept correct reverse calculation	
6b	$NkT = 1.2 \times 10^4 \text{ J}$	1		
			<i>3NkT</i> /2 gives 1.8×10 ⁴ J for [1]	
			$5NkT/2$ gives 2.9×10^4 J or 3.0×10^4 J for [1]	
7		1	correct pattern for [1]	
8		1	correct pattern for [2]	_
	\checkmark	1	one mistake for [1]	
			a mistake is an extra tick, a missing tick or a tick in the wrong place	
9	A	2	only one mistake for [1]	
	D		remember All Can Do	

10a	particles bounce off ground;	1	accept collide/hit
	momentum of particles/ground changes;	1	
	EITHER	1	QWC mark - must use correct terms for third marking point
	force on ground is its rate of change of momentum		
	OR		
	momentum change of particle requires a force, so equal and opposite force on the ground		
10bi	p = (N/V)C where $C = kT = constant$	1	
10bii	probability of a particle at <i>h</i> is $e^{-\frac{\varepsilon}{kT}}$; where $\varepsilon = mgh$ is gravitational/potential energy of particle;	1 1	accept fraction/proportion for probablility accept GPE
10biii	7.9×10 ⁴ Pa	1	accept more than 2 sig. fig.

10c	EITHER		accept $pV = nkT$ so p increases with increasing T for [1]
	more energy in system	1	
	so more particles get lucky and able to reach that height	1	accept increase of $\overline{c^2}$ so $p = \rho \overline{c^2} / 3$ increases for [1]
	OR		
	T = some value above 290 K		
	(b)(iii) correctly recalculated		
	OR		
	increased KE/speed/velocity of particles		
	increased collision rate		
	OR		
	increased momentum of particles		
	increased momentum change per collision		
	OR		
	<i>kT</i> increases		accept (-) E/KI or (-) mgn/KI decreases (as I increases)
	so $e^{\frac{E}{kT}}$ / BF / $e^{\frac{-mgh}{kT}}$ increases		

11ai	all lines at 45°	1	accept lines drawn freehand
	from (0,0) changes direction at (?,4) and	1	
	ends at (0,8)		
	time / seconds 10 8 6 4 2 0 0 2 4 6 8 10 10 10 10 10 10 10 10 10 10 10 10 10		
110	time out, time heals	4	eccent on a way time is half total time.
Tall	time out = time back	1	accept one-way time is nall total time
	because speed of light is constant	1	accent pulse travels at speed of light
44		4	
11aiii	$s = 3.00 \times 10^{\circ} \times 4.00 = 1.20 \times 10^{\circ} \text{ m}$	1	accept 1.2×10° m
11bi	pulse-echo time is now 7.34 s	1	
	less than before, (so reduced distance)	1	accept pulse-echo time is reduced by 0.66 s for [2]
			accept calculation of new distance of 1.1×10^9 m for [2]
11bii	<i>s</i> at 950 s is 1.10×10 ⁹ m	1	allow ecf from incorrect bi and aiii
	$(1.20-1.10) \times 10^{9}/946 = 1.1 \times 10^{5} \text{ m s}^{-1}$	1	accept 1.(0)×10 ⁵ m s ⁻¹
			allow ecf incorrect new distance to asteroid for [1]
11c	(measure) change of wavelength $\Delta\lambda$	1	accept increase or decrease of wavelength
			accept measure the red/blue shift for [1]
	apply $z = \Delta \lambda / \lambda = v/c$	1	

G494			Mark Scheme	June 2010
12ai	Sound energy produced (at expense of kinetic energy).	1		
12aii	$\Delta p = 2.0 \times (5 + 3.3) = 16.6$ Ns for hammer p = 16.6 Ns for mass v = 16.6 / 10 = 1.7 m s ⁻¹	1 1 1	look for attempt at momentum conservation [1] correct substitution for [1] evaluation for [1] so 0.34 m s ⁻¹ for [2]	
12b	correct shape and period correct phase	1 1	over the whole time span, any constant amplitude	
12ci	$a = -50 \times 0.21 = -10.5 \text{ m s}^{-2}$ $v = 0.85 - 10.5 \times 0.05 = 0.325 \text{ m s}^{-1}$ average speed = 0.5875 m s ⁻¹ $x = 0.21 + 0.59 \times 0.05 = 0.24$	1 1 1 1	allow ecf from one step to the next accept correct use of $s = ut + at^2/2$ for full marks ignore use of $x = A\cos(2\pi ft)$	
12cii	(do two or more successive calculations) for shorter time intervals	1		

Mark Scheme

June 2010

13a	[1] for each correct arrow	2	mark the direction of the arrow if it doesn't pass through the comet
13bi	$E_{\rm k} = 1/2mv^2$ so $E_{\rm k}/m = v^2/2$ $E_{\rm k}/m = (54.6 \times 10^3)^2/2 = 1.49 \times 10^9$ J kg ⁻¹	1 1	
13bii	$E_g = -\frac{GMm}{r} \text{ so } \frac{E_g}{m} = -\frac{GM}{r} (=V_g)$ = -6.67×10 ⁻¹¹ × 2.00×10 ³⁰ / 8.82×10 ¹⁰ = -1.5(1)×10 ⁹ J kg ⁻¹ $E_t = E_g + E_k = (-2×10^7 \text{ J kg}^{-1})$	1	ignore calculation of total energy, but accept -1.2×10 ⁷ J kg ⁻¹
13biii	$E_{g} = -2.5 \times 10^{7} \text{ J kg}^{-1}$ $E_{k} = -2.0 \times 10^{7} - (-2.52 \times 10^{7}) = 5.2 \times 10^{6} \text{ J kg}^{-1}$ so $v = \sqrt{2 \times 5.2 \times 10^{6}} = 3.2 \times 10^{3} \text{ m s}^{-1}$	1 1 1	calculate new value for E_g using - <i>GM/r</i> for [1] ecf: calculate new E_k by E_t - E_g for [1] ecf: calculate <i>v</i> from E_k for [1] accept 2.3×10 ³ m s ⁻¹ for [3]

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

