GCE

Physics B (Advancing Physics)

Advanced GCE G494
Rise and Fall of the Clockwork Universe

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Question	expected answer	mark	Additional guidance
1a 1b	Nkg^{-1} $\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$	1 1	
2a 2b	$E=0.5 C V^{2}=1.2(15) \times 10^{-3} \mathrm{~J}$ (current is) flow of charge (off capacitor, through circuit); EITHER p.d. across capacitor/resistor decreases (as capacitor loses charge) OR rate of charge release proportional to charge (on capacitor)	1 1	ignore anything more than two sig. figs e.g 1.21×10^{-3} for [1] ignore references to discharging not just charge on capacitor decreases accept electrons as charge accept $/=Q / t$ or wtte for [1]
$3 a$ 3b 3c	$\begin{aligned} & D=\frac{N m}{V}=\left(\frac{3 p}{\overline{c^{2}}}\right) \\ & \sqrt{\overline{c^{2}}}=\sqrt{\frac{3 p}{D}}=500 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ gas particles change direction; because they collide (with other particles);	1 1 1 1	look for $D=N m / V$ $N=1$ earns [0] ignore references to random ignore description of random walk
$4 a$ $4 b$	$\begin{aligned} & N=\frac{A}{\lambda}=\frac{1.6 \times 10^{5}}{7.6 \times 10^{-10}}=2.1 \times 10^{14} \\ & A=A_{0} \mathrm{e}^{-\lambda t}=4.7 \times 10^{4} \mathrm{~Bq} \end{aligned}$	1	$N=2.11 \times 10^{14}$ gives $4.75 \times 10^{4} \mathrm{~Bq}$ for [1] ignore sign of answer

\begin{tabular}{|c|c|c|c|}
\hline G494 \& \multicolumn{3}{|r|}{Mark Scheme} \\
\hline 5 \& \begin{tabular}{l}
EITHER \\
C and D OR \\
\(D\) and \(C\)
\end{tabular} \& 2 \& each correct response for [1] remember Don't Care \\
\hline \(6 a\)
\[
6 b
\] \& \[
\begin{aligned}
\& N=\frac{p V}{k T}=3.1 \times 10^{24} \\
\& N k T=1.2 \times 10^{4} \mathrm{~J}
\end{aligned}
\] \& 1

1 \& | look for at least two sig. figs in their answer, rounding to 3.1×10^{24} |
| :--- |
| accept correct reverse calculation |
| $3 N k T / 2$ gives $1.8 \times 10^{4} \mathrm{~J}$ for [1] |
| $5 \mathrm{NkT} / 2$ gives $2.9 \times 10^{4} \mathrm{~J}$ or $3.0 \times 10^{4} \mathrm{~J}$ for [1] |

\hline 7 \& \& 1 \& correct pattern for [1]

\hline 8 \& | |
| :--- |
| |
| |
| |
| | \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$

\] \& | correct pattern for [2] |
| :--- |
| one mistake for [1] |
| a mistake is an extra tick, a missing tick or a tick in the wrong place |

\hline 9 \& \[
$$
\begin{aligned}
& \text { A } \\
& \text { C } \\
& \text { D }
\end{aligned}
$$

\] \& 2 \& | only one mistake for [1] |
| :--- |
| remember All Can Do |

\hline
\end{tabular}

10a	particles bounce off ground; momentum of particles/ground changes; EITHER force on ground is its rate of change of momentum OR momentum change of particle requires a force, so equal and opposite force on the ground	1 1 1	accept collide/hit QWC mark - must use correct terms for third marking point
10bi	$p=(N / V) C$ where $C=k T=$ constant	1	
10bii	probability of a particle at h is $e^{-\frac{\varepsilon}{k T}}$; where $\varepsilon=m g h$ is gravitational/potential energy of particle;	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept fraction/proportion for probablility accept GPE
10biii	$7.9 \times 10^{4} \mathrm{~Pa}$	1	accept more than 2 sig. fig.

10c	EITHER
	more energy in system
so more particles get lucky and able to	
reach that height	
	OR
	$T=$ some value above 290 K
	(b)(iii) correctly recalculated
	OR
increased KE/speed/velocity of particles	
increased collision rate	
	OR
increased momentum of particles	
increased momentum change per collision	
	OR
	$k T$ increases
	so $e^{-\frac{E}{k T}} / \mathrm{BF} / e^{-\frac{m g n}{k T}}$ increases

[^0]| 11ai | all lines at 45°
 from $(0,0)$ changes direction at $(?, 4)$ and ends at $(0,8)$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | accept lines drawn freehand |
| :---: | :---: | :---: | :---: |
| 11aii | time out = time back
 because speed of light is constant | 1 1 | accept one-way time is half total time ignore references to distance accept pulse travels at speed of light |
| 11aiii | $s=3.00 \times 10^{8} \times 4.00=1.20 \times 10^{9} \mathrm{~m}$ | 1 | accept $1.2 \times 10^{9} \mathrm{~m}$ |
| 11bi | pulse-echo time is now 7.34 s less than before, (so reduced distance) | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | accept pulse-echo time is reduced by 0.66 s for [2] accept calculation of new distance of $1.1 \times 10^{9} \mathrm{~m}$ for [2] |
| 11bii | $\begin{aligned} & s \text { at } 950 \mathrm{~s} \text { is } 1.10 \times 10^{9} \mathrm{~m} \\ & (1.20-1.10) \times 10^{9} / 946=1.1 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | allow ecf from incorrect bi and aiii accept 1 .(0) $\times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$
 allow ecf incorrect new distance to asteroid for [1] |
| 11c | (measure) change of wavelength $\Delta \lambda$ apply $z=\Delta \lambda / \lambda=v / c$ | 1 1 | accept increase or decrease of wavelength accept measure the red/blue shift for [1] |

494			Mark Scheme
12ai	Sound energy produced (at expense of kinetic energy).	1	
12aii	$\Delta p=2.0 \times(5+3.3)=16.6 \mathrm{Ns}$ for hammer $p=16.6$ Ns for mass $v=16.6 / 10=1.7 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	```look for attempt at momentum conservation [1] correct substitution for [1] evaluation for [1] so 0.34 m s-1 for [2]```
12b	correct shape and period correct phase	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	over the whole time span, any constant amplitude
12ci	$a=-50 \times 0.21=-10.5 \mathrm{~m} \mathrm{~s}^{-2}$	1	allow ecf from one step to the next
	$v=0.85-10.5 \times 0.05=0.325 \mathrm{~m} \mathrm{~s}^{-1}$	1	
	average speed $=0.5875 \mathrm{~m} \mathrm{~s}^{-1}$ $x=0.21+0.59 \times 0.05=0.24$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept correct use of $s=u t+a t^{2} / 2$ for full marks
12cii	(do two or more successive calculations) for shorter time intervals	1	

13a	[1] for each correct arrow	2	mark the direction of the arrow if it doesn't pass through the comet
13bi	$\begin{aligned} & E_{\mathrm{k}}=1 / 2 m v^{2} \text { so } E_{\mathrm{k}} / m=v^{2} / 2 \\ & E_{\mathrm{k}} / m=\left(54.6 \times 10^{3}\right)^{2} / 2=1.49 \times 10^{9} \mathrm{~J} \mathrm{~kg}^{-1} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
13bii	$\begin{aligned} & E_{g}=-\frac{G M m}{r} \text { so } \frac{E_{g}}{m}=-\frac{G M}{r}\left(=V_{g}\right) \\ & =-6.67 \times 10^{-11} \times 2.00 \times 10^{30} / 8.82 \times 10^{10} \\ & =-1.5(1) \times 10^{9} \mathrm{Jkg}^{-1} \\ & E_{\mathrm{t}}=E_{\mathrm{g}}+E_{\mathrm{k}}=\left(-2 \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1}\right) \end{aligned}$	1 1	ignore calculation of total energy, but accept $-1.2 \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1}$
13biii	$\begin{aligned} & E_{g}=-2.5 \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1} \\ & E_{\mathrm{k}}=-2.0 \times 10^{7}-\left(-2.52 \times 10^{7}\right)=5.2 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1} \\ & \text { so } v=\sqrt{2 \times 5.2 \times 10^{6}}=3.2 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	1 1 1 1	calculate new value for E_{g} using -GM/r for [1] ecf: calculate new E_{k} by $E_{\mathrm{t}}-E_{\mathrm{g}}$ for [1] ecf: calculate v from E_{k} for [1] accept $2.3 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$ for [3]

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

[^0]: accept $p V=n k T$ so p increases with increasing T for [1]
 accept increase of $\overline{c^{2}}$ so $p=\rho \overline{c^{2}} / 3$ increases for [1]
 accept (-)E/kT or (-)mgh/kT decreases (as T increases)

